Notice of Violation of IEEE Publication PrinciplesParameters Selection and Noise Estimation of SVM Regression

Jifu Nong
{"title":"Notice of Violation of IEEE Publication PrinciplesParameters Selection and Noise Estimation of SVM Regression","authors":"Jifu Nong","doi":"10.1109/CSO.2012.33","DOIUrl":null,"url":null,"abstract":"We investigate practical selection of hyper parameters for support vector machines (SVM) regression. The proposed methodology advocates analytic parameter selection directly from the training data, rather than re-sampling approaches commonly used in SVM applications. In particular, we describe a new analytical prescription for setting the value of insensitive zone, as a function of training sample size. Good generalization performance of the proposed parameter selection is demonstrated empirically using several low-dimensional and high-dimensional regression problems. Further, we point out the importance of Vapnik insensitive loss for regression problems with finite samples. To this end, we compare generalization performance of SVM regression with regression using least-modulus loss and standard squared loss. These comparisons indicate superior generalization performance of SVM regression under sparse sample settings, for various types of additive noise.","PeriodicalId":170543,"journal":{"name":"2012 Fifth International Joint Conference on Computational Sciences and Optimization","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fifth International Joint Conference on Computational Sciences and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2012.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We investigate practical selection of hyper parameters for support vector machines (SVM) regression. The proposed methodology advocates analytic parameter selection directly from the training data, rather than re-sampling approaches commonly used in SVM applications. In particular, we describe a new analytical prescription for setting the value of insensitive zone, as a function of training sample size. Good generalization performance of the proposed parameter selection is demonstrated empirically using several low-dimensional and high-dimensional regression problems. Further, we point out the importance of Vapnik insensitive loss for regression problems with finite samples. To this end, we compare generalization performance of SVM regression with regression using least-modulus loss and standard squared loss. These comparisons indicate superior generalization performance of SVM regression under sparse sample settings, for various types of additive noise.
违反IEEE发表原则的通知。支持向量机回归的参数选择与噪声估计
我们研究了支持向量机(SVM)回归超参数的实际选择。所提出的方法主张直接从训练数据中选择分析参数,而不是在支持向量机应用中常用的重新抽样方法。特别地,我们描述了一个新的分析公式来设置不敏感区域的值,作为训练样本大小的函数。通过几个低维和高维回归问题的经验证明了所提出的参数选择具有良好的泛化性能。进一步指出了Vapnik不敏感损失对于有限样本回归问题的重要性。为此,我们比较了SVM回归与最小模损失和标准平方损失回归的泛化性能。这些比较表明,在稀疏样本设置下,对于各种类型的加性噪声,支持向量机回归具有优越的泛化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信