Time-series forecasting using Bagging techniques and reservoir computing

Sebastián Basterrech, V. Snás̃el
{"title":"Time-series forecasting using Bagging techniques and reservoir computing","authors":"Sebastián Basterrech, V. Snás̃el","doi":"10.1109/SOCPAR.2013.7054117","DOIUrl":null,"url":null,"abstract":"In this paper we present a general procedure to use Bagging techniques for time series processing and forecasting problems Bagging is one of the most used techniques for combining several predictors in order to produce a highly accurate method. The method uses bootstrap replications of the original training set and for each replicate sample one predictor is generated. After that the method combines the predictors using the majority vote for classification problems and the average function for regression problems In temporal learning tasks, the order serial of the data precludes to realize bootstrap samples Here, we present an approach which uses a recurrent neural network to transform the spatio-temporal information of the input data in a new larger space In this new space is possible to apply bootstrap techniques. In this initial paper, we evaluate our approach on 4 time series benchmarks using linear regressions Although, the idea presented here is more general and can be used with other kind of statistical methods such that CART, SVM, and so on. The empirical results show the power of this new approach to achieve good performances in temporal learning tasks.","PeriodicalId":315126,"journal":{"name":"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2013.7054117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we present a general procedure to use Bagging techniques for time series processing and forecasting problems Bagging is one of the most used techniques for combining several predictors in order to produce a highly accurate method. The method uses bootstrap replications of the original training set and for each replicate sample one predictor is generated. After that the method combines the predictors using the majority vote for classification problems and the average function for regression problems In temporal learning tasks, the order serial of the data precludes to realize bootstrap samples Here, we present an approach which uses a recurrent neural network to transform the spatio-temporal information of the input data in a new larger space In this new space is possible to apply bootstrap techniques. In this initial paper, we evaluate our approach on 4 time series benchmarks using linear regressions Although, the idea presented here is more general and can be used with other kind of statistical methods such that CART, SVM, and so on. The empirical results show the power of this new approach to achieve good performances in temporal learning tasks.
利用Bagging技术和油藏计算进行时序预测
在本文中,我们提出了将Bagging技术用于时间序列处理和预测问题的一般程序,Bagging是将几个预测因子组合在一起以产生高度精确的方法的最常用技术之一。该方法使用原始训练集的自举复制,并为每个复制样本生成一个预测器。在时间学习任务中,数据的顺序序列阻碍了自举样本的实现。在这里,我们提出了一种使用递归神经网络在一个新的更大的空间中变换输入数据的时空信息的方法,在这个新的空间中应用自举技术是可能的。在这篇最初的论文中,我们使用线性回归在4个时间序列基准上评估了我们的方法,尽管这里提出的想法更一般,可以与其他类型的统计方法一起使用,如CART, SVM等。实验结果表明,这种新方法在短时学习任务中取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信