A surface reconstruction neural network for absolute orientation problems

J. Hwang, H. Li
{"title":"A surface reconstruction neural network for absolute orientation problems","authors":"J. Hwang, H. Li","doi":"10.1109/NNSP.1991.239490","DOIUrl":null,"url":null,"abstract":"The authors propose a neural network for representation and reconstruction of 2-D curves or 3-D surfaces of complex objects with application to absolute orientation problems of rigid bodies. The surface reconstruction network is trained by a set of roots (the points on the curve or the surface of the object) via forming a very steep cliff between the exterior and interior of the surface, with the training root points lying in the middle of the steep cliff. The Levenberg-Marquardt version of Gauss Newton optimization algorithm was used in the backpropagation learning to overcome the problem of local minima and to speed up the convergence of learning. This representation is then used to estimate the similarity transform parameters (rotation, translation, and scaling), frequently encountered in the absolute orientation problems of rigid bodies.<<ETX>>","PeriodicalId":354832,"journal":{"name":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1991.239490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The authors propose a neural network for representation and reconstruction of 2-D curves or 3-D surfaces of complex objects with application to absolute orientation problems of rigid bodies. The surface reconstruction network is trained by a set of roots (the points on the curve or the surface of the object) via forming a very steep cliff between the exterior and interior of the surface, with the training root points lying in the middle of the steep cliff. The Levenberg-Marquardt version of Gauss Newton optimization algorithm was used in the backpropagation learning to overcome the problem of local minima and to speed up the convergence of learning. This representation is then used to estimate the similarity transform parameters (rotation, translation, and scaling), frequently encountered in the absolute orientation problems of rigid bodies.<>
面向绝对定向问题的曲面重构神经网络
作者提出了一种用于复杂物体二维曲线或三维曲面表示和重建的神经网络,并将其应用于刚体的绝对定向问题。表面重构网络是通过一组根(曲线上的点或物体表面上的点)在表面的内外之间形成一个非常陡峭的悬崖来训练的,训练的根点位于陡峭悬崖的中间。在反向传播学习中采用了Levenberg-Marquardt版本的高斯牛顿优化算法,克服了局部极小值问题,加快了学习的收敛速度。然后使用这种表示来估计在刚体的绝对定向问题中经常遇到的相似变换参数(旋转、平移和缩放)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信