The implementation of edge detection on HSA environment

S. Prongnuch, T. Wiangtong
{"title":"The implementation of edge detection on HSA environment","authors":"S. Prongnuch, T. Wiangtong","doi":"10.1109/IEECON.2017.8075811","DOIUrl":null,"url":null,"abstract":"This paper presents the implementation of image edge detection on Heterogeneous System Architecture (HSA). HSA which includes ARM processor, Coprocessor and FPGA are compared with x64 CPU in terms of performance and power consumption. The experimental results show that although the best execution time is from x64 CPU, HSA has 50 times more energy efficiency. Also, HSA can exploit coprocessors and reconfigurable hardware to reduce processing time and it can achieve 1.3x speedup when process an image with the size of 512×512 pixels.","PeriodicalId":196081,"journal":{"name":"2017 International Electrical Engineering Congress (iEECON)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Electrical Engineering Congress (iEECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEECON.2017.8075811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents the implementation of image edge detection on Heterogeneous System Architecture (HSA). HSA which includes ARM processor, Coprocessor and FPGA are compared with x64 CPU in terms of performance and power consumption. The experimental results show that although the best execution time is from x64 CPU, HSA has 50 times more energy efficiency. Also, HSA can exploit coprocessors and reconfigurable hardware to reduce processing time and it can achieve 1.3x speedup when process an image with the size of 512×512 pixels.
HSA环境下边缘检测的实现
提出了一种基于异构系统架构(HSA)的图像边缘检测方法。HSA由ARM处理器、协处理器和FPGA组成,在性能和功耗方面与x64 CPU进行了比较。实验结果表明,虽然最佳的执行时间是在x64 CPU上,但HSA的能效是x64 CPU的50倍。此外,HSA可以利用协处理器和可重构硬件来减少处理时间,并且在处理512×512像素大小的图像时可以实现1.3倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信