Adaptive control of a class of nonlinear systems with fuzzy logic

C. Su, Y. Stepanenko
{"title":"Adaptive control of a class of nonlinear systems with fuzzy logic","authors":"C. Su, Y. Stepanenko","doi":"10.1109/FUZZY.1994.343834","DOIUrl":null,"url":null,"abstract":"An adaptive tracking control architecture is proposed for a class of continuous-time nonlinear dynamic systems, for which an explicit linear parameterization of the uncertainty in the dynamics is either unknown or impossible. The architecture employs fuzzy systems, which are expressed as a series expansion of basis functions, to adaptively compensate for the plant nonlinearities. Global asymptotic stability of the algorithm is established in the Lyapunov sense, with tracking errors converging to a neighborhood of zero. Simulation results for an unstable nonlinear plant are included to demonstrate that incorporating the linguistic fuzzy information from human experts results in superior tracking performance.<<ETX>>","PeriodicalId":153967,"journal":{"name":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"204","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1994.343834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 204

Abstract

An adaptive tracking control architecture is proposed for a class of continuous-time nonlinear dynamic systems, for which an explicit linear parameterization of the uncertainty in the dynamics is either unknown or impossible. The architecture employs fuzzy systems, which are expressed as a series expansion of basis functions, to adaptively compensate for the plant nonlinearities. Global asymptotic stability of the algorithm is established in the Lyapunov sense, with tracking errors converging to a neighborhood of zero. Simulation results for an unstable nonlinear plant are included to demonstrate that incorporating the linguistic fuzzy information from human experts results in superior tracking performance.<>
一类非线性模糊系统的自适应控制
针对一类连续时间非线性动态系统,提出了一种自适应跟踪控制体系结构,该系统的动力学不确定性要么是未知的,要么是不可能明确的线性参数化。该体系结构采用模糊系统,将模糊系统表示为基函数的一系列展开,以自适应补偿对象的非线性。在Lyapunov意义下建立了该算法的全局渐近稳定性,跟踪误差收敛到零邻域。最后给出了一个不稳定非线性对象的仿真结果,证明了将人类专家的语言模糊信息结合在一起可以获得更好的跟踪效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信