Recognition of pests on crops with a random subspace classifier

L. Serrato, Tetyana Baydyk, E. Kussul, A. Escalante-Estrada, Maria Teresa Gonzalez Rodriguez
{"title":"Recognition of pests on crops with a random subspace classifier","authors":"L. Serrato, Tetyana Baydyk, E. Kussul, A. Escalante-Estrada, Maria Teresa Gonzalez Rodriguez","doi":"10.1109/IWOBI.2015.7160138","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to develop and test a recognition system for the Colorado potato beetle. This task is very important for localizing the beetles and reducing the pesticide volume used to protect the harvest. We employ a beetle image dataset that contains 25 images representing different beetle positions and varying numbers of beetles. These images were collected from the Internet. Our recognition system is based on a special neural network, the random subspace classifier (RSC). We calculate the brightness, contrast, and contour orientation histograms of the images and use them as features and inputs to the RSC neural classifier. In addition, we describe the RSC structure and algorithms and analyse the obtained results. We obtained the best recognition rate of 85%.","PeriodicalId":373170,"journal":{"name":"2015 4th International Work Conference on Bioinspired Intelligence (IWOBI)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 4th International Work Conference on Bioinspired Intelligence (IWOBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWOBI.2015.7160138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The purpose of this study is to develop and test a recognition system for the Colorado potato beetle. This task is very important for localizing the beetles and reducing the pesticide volume used to protect the harvest. We employ a beetle image dataset that contains 25 images representing different beetle positions and varying numbers of beetles. These images were collected from the Internet. Our recognition system is based on a special neural network, the random subspace classifier (RSC). We calculate the brightness, contrast, and contour orientation histograms of the images and use them as features and inputs to the RSC neural classifier. In addition, we describe the RSC structure and algorithms and analyse the obtained results. We obtained the best recognition rate of 85%.
基于随机子空间分类器的农作物害虫识别
本研究的目的是开发和测试科罗拉多马铃薯甲虫的识别系统。这项任务对于定位甲虫和减少农药用量以保护收成非常重要。我们使用一个甲虫图像数据集,其中包含25张图像,代表不同的甲虫位置和不同数量的甲虫。这些图片是从互联网上收集的。我们的识别系统是基于一个特殊的神经网络,随机子空间分类器(RSC)。我们计算图像的亮度、对比度和轮廓方向直方图,并将它们用作RSC神经分类器的特征和输入。此外,我们描述了RSC的结构和算法,并分析了得到的结果。我们获得了85%的最佳识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信