{"title":"Energy-efficient localised rollback via data flow analysis and frequency scaling","authors":"K. Dichev, K. Cameron, Dimitrios S. Nikolopoulos","doi":"10.1145/3236367.3236379","DOIUrl":null,"url":null,"abstract":"Exascale systems will suffer failures hourly. HPC programmers rely mostly on application-level checkpoint and a global rollback to recover. In recent years, techniques reducing the number of rolling back processes have been implemented via message logging. However, the log-based approaches have weaknesses, such as being dependent on complex modifications within an MPI implementation, and the fact that a full restart may be required in the general case. To address the limitations of all log-based mechanisms, we return to checkpoint-only mechanisms, but advocate data flow rollback (DFR), a fundamentally different approach relying on analysis of the data flow of iterative codes, and the well-known concept of data flow graphs. We demonstrate the benefits of DFR for an MPI stencil code by localising rollback, and then reduce energy consumption by 10-12% on idling nodes via frequency scaling. We also provide large-scale estimates for the energy savings of DFR compared to global rollback, which for stencil codes increase as n2 for a process count n.","PeriodicalId":225539,"journal":{"name":"Proceedings of the 25th European MPI Users' Group Meeting","volume":"54 52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th European MPI Users' Group Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3236367.3236379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Exascale systems will suffer failures hourly. HPC programmers rely mostly on application-level checkpoint and a global rollback to recover. In recent years, techniques reducing the number of rolling back processes have been implemented via message logging. However, the log-based approaches have weaknesses, such as being dependent on complex modifications within an MPI implementation, and the fact that a full restart may be required in the general case. To address the limitations of all log-based mechanisms, we return to checkpoint-only mechanisms, but advocate data flow rollback (DFR), a fundamentally different approach relying on analysis of the data flow of iterative codes, and the well-known concept of data flow graphs. We demonstrate the benefits of DFR for an MPI stencil code by localising rollback, and then reduce energy consumption by 10-12% on idling nodes via frequency scaling. We also provide large-scale estimates for the energy savings of DFR compared to global rollback, which for stencil codes increase as n2 for a process count n.