Extraction of Malignant Tumor Diagnostic Text Information Based on Named Entity Recognition

Qingwei Chen, Huang Xu, Guanlin Chen
{"title":"Extraction of Malignant Tumor Diagnostic Text Information Based on Named Entity Recognition","authors":"Qingwei Chen, Huang Xu, Guanlin Chen","doi":"10.1109/ICVRIS51417.2020.00140","DOIUrl":null,"url":null,"abstract":"In order to extract named entity recognition from malignant tumor medical medical text data, an algorithm that combines the bidirectional long short-term memory network and the conditional random field (Bi-LSTM-CRF) is proposed. This method adds the CRF layer processing after Bi-LSTM network output, so that the model has better comprehensive performance since the CRF can take orders of words into consideration. The experimental results show that comparing to the algorithm that combines the maximum entropy Markov model and the conditional random field (MEMM+CRF) and the algorithm of the bidirectional long short-term memory network (Bi-LSTM), our method is more excellent in entity recognition for comprehensive practical applications, and can basically identify the corresponding medical entity.","PeriodicalId":162549,"journal":{"name":"2020 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRIS51417.2020.00140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In order to extract named entity recognition from malignant tumor medical medical text data, an algorithm that combines the bidirectional long short-term memory network and the conditional random field (Bi-LSTM-CRF) is proposed. This method adds the CRF layer processing after Bi-LSTM network output, so that the model has better comprehensive performance since the CRF can take orders of words into consideration. The experimental results show that comparing to the algorithm that combines the maximum entropy Markov model and the conditional random field (MEMM+CRF) and the algorithm of the bidirectional long short-term memory network (Bi-LSTM), our method is more excellent in entity recognition for comprehensive practical applications, and can basically identify the corresponding medical entity.
基于命名实体识别的恶性肿瘤诊断文本信息提取
为了从恶性肿瘤医学文本数据中提取命名实体识别,提出了一种结合双向长短期记忆网络和条件随机场(Bi-LSTM-CRF)的算法。该方法在Bi-LSTM网络输出后增加了CRF层处理,由于CRF可以考虑词的阶数,使得模型具有更好的综合性能。实验结果表明,与最大熵马尔可夫模型与条件随机场相结合的算法(MEMM+CRF)和双向长短期记忆网络算法(Bi-LSTM)相比,我们的方法在实体识别方面具有更优异的综合实际应用,基本可以识别出相应的医疗实体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信