Ontology-Driven Hierarchical Deep Learning for Fashion Recognition

Zhenzhong Kuang, Jun Yu, Zhou Yu, Jianping Fan
{"title":"Ontology-Driven Hierarchical Deep Learning for Fashion Recognition","authors":"Zhenzhong Kuang, Jun Yu, Zhou Yu, Jianping Fan","doi":"10.1109/MIPR.2018.00012","DOIUrl":null,"url":null,"abstract":"We present an automatic approach for large-scale fashion recognition, given an image without any kind of annotation. We formulate the problem as a hierarchical deep learning (HDL) algorithm which can: (i) integrate the deep CNNs to learn more discriminative high-level features for fashion image representations of both coarse-grained and fine-grained classes at different levels of the fashion ontology tree; (ii) leverage multi-task learning and inter-task relationship constraint to train more discriminative classifiers for the nodes on the fashion ontology; (iii) use back propagation to simultaneously refine both the relevant node classifiers and the deep CNNs according to a joint objective function; and (iv) accelerate the fashion retrieval process via path-based classification. The experimental results have verified the effectiveness and efficiency of our proposed algorithm on both classification and retrieval performance.","PeriodicalId":320000,"journal":{"name":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR.2018.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We present an automatic approach for large-scale fashion recognition, given an image without any kind of annotation. We formulate the problem as a hierarchical deep learning (HDL) algorithm which can: (i) integrate the deep CNNs to learn more discriminative high-level features for fashion image representations of both coarse-grained and fine-grained classes at different levels of the fashion ontology tree; (ii) leverage multi-task learning and inter-task relationship constraint to train more discriminative classifiers for the nodes on the fashion ontology; (iii) use back propagation to simultaneously refine both the relevant node classifiers and the deep CNNs according to a joint objective function; and (iv) accelerate the fashion retrieval process via path-based classification. The experimental results have verified the effectiveness and efficiency of our proposed algorithm on both classification and retrieval performance.
面向时尚识别的本体驱动层次深度学习
我们提出了一种大规模时尚识别的自动方法,给出了一张没有任何注释的图像。我们将该问题表述为一种分层深度学习(HDL)算法,该算法可以:(i)集成深度cnn,以在时尚本体树的不同层次上学习粗粒度和细粒度类的时尚图像表示的更具判别性的高级特征;(ii)利用多任务学习和任务间关系约束,对时尚本体上的节点训练更具判别性的分类器;(iii)使用反向传播,根据联合目标函数同时细化相关节点分类器和深度cnn;(iv)通过基于路径的分类加速时尚检索过程。实验结果验证了该算法在分类和检索性能上的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信