Hyperspectral Super-resolution Accounting for Spectral Variability: Coupled Tensor LL1-Based Recovery and Blind Unmixing of the Unknown Super-resolution Image

C. Prévost, R. Borsoi, K. Usevich, D. Brie, J. Bermudez, C. Richard
{"title":"Hyperspectral Super-resolution Accounting for Spectral Variability: Coupled Tensor LL1-Based Recovery and Blind Unmixing of the Unknown Super-resolution Image","authors":"C. Prévost, R. Borsoi, K. Usevich, D. Brie, J. Bermudez, C. Richard","doi":"10.1137/21m1409354","DOIUrl":null,"url":null,"abstract":". In this paper, we propose to jointly solve the hyperspectral super-resolution problem and the unmix-6 ing problem of the underlying super-resolution image using a coupled LL1 block-tensor decomposi-7 tion. We consider a spectral variability phenomenon occurring between the observed low-resolution 8 images. Exact recovery conditions for the image and mixing factors are provided. We propose two 9 algorithms: an unconstrained one and another one subject to non-negativity constraints, to solve 10 the problems at hand. We showcase performance of the proposed approach on synthetic and real 11 images.","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Imaging Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1409354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

. In this paper, we propose to jointly solve the hyperspectral super-resolution problem and the unmix-6 ing problem of the underlying super-resolution image using a coupled LL1 block-tensor decomposi-7 tion. We consider a spectral variability phenomenon occurring between the observed low-resolution 8 images. Exact recovery conditions for the image and mixing factors are provided. We propose two 9 algorithms: an unconstrained one and another one subject to non-negativity constraints, to solve 10 the problems at hand. We showcase performance of the proposed approach on synthetic and real 11 images.
光谱变异性的高光谱超分辨率计算:基于耦合张量ll1的未知超分辨率图像恢复和盲解
. 在本文中,我们提出使用耦合LL1块张量分解联合解决高光谱超分辨率问题和底层超分辨率图像的解混问题。我们考虑在观测到的低分辨率图像之间发生的光谱变异性现象。给出了精确的图像恢复条件和混合因素。我们提出了两种算法:一种不受约束的算法和另一种受非负性约束的算法,以解决手头的问题。我们展示了该方法在合成图像和真实图像上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信