Lin Shi, Chengzhi Hu, Min-li Bai, Jizu Lv, Yubai Li
{"title":"Mechanism Research of Coupling Drag Reduction and Heat Transfer on Surface With Different Liquid-Solid Interaction","authors":"Lin Shi, Chengzhi Hu, Min-li Bai, Jizu Lv, Yubai Li","doi":"10.1115/mnhmt2019-4180","DOIUrl":null,"url":null,"abstract":"\n In order to study the effect of liquid-solid interaction and surface temperature on drag reduction and heat transfer, non-equilibrium molecular dynamics simulation is performed to investigate the density profile, velocity profile, velocity slip and temperature profile of fluid by changing liquid-solid interaction factor α and surface temperature. The result shows that there is a low density layer near the surface when α is small (weak liquid-solid interaction), larger α (strong liquid-solid interaction) can induce density oscillation and solid-like layer near the surface. Velocity slip will decrease as the increases of α. It’s worth noting that for α < 0.02, the density oscillation becomes more obvious as the rises of temperature, which impairs drag reduction; For α > 0.02 , the rises of temperature will impair the oscillation, which enhances drag reduction. Due to the existence of low density layer, the heat transfer capacity is very weak when α is small, but the capacity will be enhanced as the increases of α.","PeriodicalId":331854,"journal":{"name":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/mnhmt2019-4180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In order to study the effect of liquid-solid interaction and surface temperature on drag reduction and heat transfer, non-equilibrium molecular dynamics simulation is performed to investigate the density profile, velocity profile, velocity slip and temperature profile of fluid by changing liquid-solid interaction factor α and surface temperature. The result shows that there is a low density layer near the surface when α is small (weak liquid-solid interaction), larger α (strong liquid-solid interaction) can induce density oscillation and solid-like layer near the surface. Velocity slip will decrease as the increases of α. It’s worth noting that for α < 0.02, the density oscillation becomes more obvious as the rises of temperature, which impairs drag reduction; For α > 0.02 , the rises of temperature will impair the oscillation, which enhances drag reduction. Due to the existence of low density layer, the heat transfer capacity is very weak when α is small, but the capacity will be enhanced as the increases of α.