Principal Components Regression by using Generalized Principal Components Analysis

Masakazu Fujiwara, T. Minamidani, Isamu Nagai, H. Wakaki
{"title":"Principal Components Regression by using Generalized Principal Components Analysis","authors":"Masakazu Fujiwara, T. Minamidani, Isamu Nagai, H. Wakaki","doi":"10.14490/JJSS.43.57","DOIUrl":null,"url":null,"abstract":"Principal components analysis (PCA) is one method for reducing the dimension of the explanatory variables, although the principal components are derived by using all the explanatory variables. Several authors have proposed a modified PCA (MPCA), which is based on using only selected explanatory variables in order to obtain the principal components (see e.g., Jolliffie, 1972, 1986; Robert and Escoufier, 1976; Tanaka and Mori, 1997). However, MPCA uses all of the selected explanatory variables to obtain the principal components. There may, therefore, be extra variables for some of the principal components. Hence, in the present paper, we propose a generalized PCA (GPCA) by extending the partitioning of the explanatory variables. In this paper, we estimate the unknown vector in the linear regression model based on the result of a GPCA. We also propose some improvements in the method to reduce the computational cost.","PeriodicalId":326924,"journal":{"name":"Journal of the Japan Statistical Society. Japanese issue","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Statistical Society. Japanese issue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14490/JJSS.43.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Principal components analysis (PCA) is one method for reducing the dimension of the explanatory variables, although the principal components are derived by using all the explanatory variables. Several authors have proposed a modified PCA (MPCA), which is based on using only selected explanatory variables in order to obtain the principal components (see e.g., Jolliffie, 1972, 1986; Robert and Escoufier, 1976; Tanaka and Mori, 1997). However, MPCA uses all of the selected explanatory variables to obtain the principal components. There may, therefore, be extra variables for some of the principal components. Hence, in the present paper, we propose a generalized PCA (GPCA) by extending the partitioning of the explanatory variables. In this paper, we estimate the unknown vector in the linear regression model based on the result of a GPCA. We also propose some improvements in the method to reduce the computational cost.
用广义主成分分析法进行主成分回归
主成分分析(PCA)是一种降低解释变量维数的方法,尽管主成分是由所有解释变量导出的。几位作者提出了一种改进的PCA (MPCA),它基于仅使用选定的解释变量来获得主成分(例如,Jolliffie, 1972, 1986;Robert and Escoufier, 1976;田中和森,1997)。然而,MPCA使用所有选定的解释变量来获得主成分。因此,对于某些主成分,可能存在额外的变量。因此,在本文中,我们通过扩展解释变量的划分,提出了广义主成分分析(GPCA)。在本文中,我们基于GPCA的结果估计了线性回归模型中的未知向量。我们还提出了一些改进方法,以减少计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信