Sparse Bayesian Learning for Horizontal Wavenumber Retrieval in Underwater Acoustical Signal Processing

Zhenglin Li, Haiqiang Niu, Z. Gong, Renhe Zhang
{"title":"Sparse Bayesian Learning for Horizontal Wavenumber Retrieval in Underwater Acoustical Signal Processing","authors":"Zhenglin Li, Haiqiang Niu, Z. Gong, Renhe Zhang","doi":"10.1109/ICDSP.2018.8631652","DOIUrl":null,"url":null,"abstract":"According to the classical normal mode theory, low frequency acoustical signals propagating in shallow water are composed of several modal components associated with their own horizontal wavenumbers. In this paper, the horizontal wavenumbers are retrieved by the sparse Bayesian learning approach using a vertical line array. The modal depth functions derived from the Beam-Displacement-Ray-Mode theory are used as the dictionary. The proposed method does not require the prior of sea bottom information (e.g., soud speed). The performance is demonstrated by simulations in a shallow water environment.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

According to the classical normal mode theory, low frequency acoustical signals propagating in shallow water are composed of several modal components associated with their own horizontal wavenumbers. In this paper, the horizontal wavenumbers are retrieved by the sparse Bayesian learning approach using a vertical line array. The modal depth functions derived from the Beam-Displacement-Ray-Mode theory are used as the dictionary. The proposed method does not require the prior of sea bottom information (e.g., soud speed). The performance is demonstrated by simulations in a shallow water environment.
稀疏贝叶斯学习在水声信号处理中的水平波数检索
根据经典的正模态理论,在浅水中传播的低频声信号是由与自身水平波数相关的几个模态分量组成的。本文采用稀疏贝叶斯学习方法,利用垂直线阵列检索水平波数。采用由梁-位移-射线-模态理论导出的模态深度函数作为字典。所提出的方法不需要先验的海底信息(如声速)。通过浅水环境的仿真验证了该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信