Hybrid Architecture of Deep Convolutional Variational Auto-encoder for Remaining useful Life Prediction

R. Zemouri, Z. A. Masry, Ikram Remadna, Sadek Labib Terrissa, N. Zerhouni
{"title":"Hybrid Architecture of Deep Convolutional Variational Auto-encoder for Remaining useful Life Prediction","authors":"R. Zemouri, Z. A. Masry, Ikram Remadna, Sadek Labib Terrissa, N. Zerhouni","doi":"10.3850/978-981-14-8593-0_4876-CD","DOIUrl":null,"url":null,"abstract":"The remaining useful life prediction is a key element in decision-making and maintenance strategies development. Therefore, in practical situation, it is usually affected by uncertainty. The aim of this work is hence to propose a deep learning method which predicts when an in-service machine will fail to overcome the latter problem. It is based on deep convolutional variational autoencoder (CVAE). The proposed approach is validated using the C-MAPSS dataset of the aero-engine. The model’s classification performance has reached a superior accuracy compared to existing models and it is used for machine failure prediction in different time windows.","PeriodicalId":201963,"journal":{"name":"Proceedings of the 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3850/978-981-14-8593-0_4876-CD","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The remaining useful life prediction is a key element in decision-making and maintenance strategies development. Therefore, in practical situation, it is usually affected by uncertainty. The aim of this work is hence to propose a deep learning method which predicts when an in-service machine will fail to overcome the latter problem. It is based on deep convolutional variational autoencoder (CVAE). The proposed approach is validated using the C-MAPSS dataset of the aero-engine. The model’s classification performance has reached a superior accuracy compared to existing models and it is used for machine failure prediction in different time windows.
用于剩余使用寿命预测的深度卷积变分自编码器混合结构
剩余使用寿命预测是决策和维护策略制定的关键因素。因此,在实际情况中,通常会受到不确定性的影响。因此,这项工作的目的是提出一种深度学习方法,该方法可以预测在役机器何时无法克服后一个问题。它是基于深度卷积变分自编码器(CVAE)。利用航空发动机C-MAPSS数据集对该方法进行了验证。与现有模型相比,该模型的分类性能达到了更高的精度,并可用于不同时间窗的机器故障预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信