Integrating Data-Intensive Computing Systems with Biological Data Analysis Frameworks

Edvard Pedersen, I. Raknes, Martin Ernstsen, L. A. Bongo
{"title":"Integrating Data-Intensive Computing Systems with Biological Data Analysis Frameworks","authors":"Edvard Pedersen, I. Raknes, Martin Ernstsen, L. A. Bongo","doi":"10.1109/PDP.2015.106","DOIUrl":null,"url":null,"abstract":"Biological data analysis is typically implemented using a pipeline that combines many data analysis tools and meta-databases. These pipelines must scale to very large datasets, and therefore often require parallel and distributed computing. There are many infrastructure systems for data-intensive computing. However, most biological data analysis pipelines do not leverage these systems. An important challenge is therefore to integrate biological data analysis frameworks with data-intensive computing infrastructure systems. In this paper, we describe how we have extended data-intensive computing systems to support unmodified biological data analysis tools. We also describe four approaches for integrating the extended systems with biological data analysis frameworks, and discuss challenges for such integration on production platforms. Our results demonstrate how biological data analysis pipelines can benefit from infrastructure systems for data-intensive computing.","PeriodicalId":285111,"journal":{"name":"2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","volume":"277 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2015.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Biological data analysis is typically implemented using a pipeline that combines many data analysis tools and meta-databases. These pipelines must scale to very large datasets, and therefore often require parallel and distributed computing. There are many infrastructure systems for data-intensive computing. However, most biological data analysis pipelines do not leverage these systems. An important challenge is therefore to integrate biological data analysis frameworks with data-intensive computing infrastructure systems. In this paper, we describe how we have extended data-intensive computing systems to support unmodified biological data analysis tools. We also describe four approaches for integrating the extended systems with biological data analysis frameworks, and discuss challenges for such integration on production platforms. Our results demonstrate how biological data analysis pipelines can benefit from infrastructure systems for data-intensive computing.
集成数据密集型计算系统与生物数据分析框架
生物数据分析通常使用结合了许多数据分析工具和元数据库的管道来实现。这些管道必须扩展到非常大的数据集,因此通常需要并行和分布式计算。有许多用于数据密集型计算的基础设施系统。然而,大多数生物数据分析管道并没有利用这些系统。因此,将生物数据分析框架与数据密集型计算基础设施系统集成是一个重要的挑战。在本文中,我们描述了我们如何扩展数据密集型计算系统来支持未经修改的生物数据分析工具。我们还描述了将扩展系统与生物数据分析框架集成的四种方法,并讨论了在生产平台上进行这种集成的挑战。我们的研究结果展示了生物数据分析管道如何从数据密集型计算的基础设施系统中受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信