Transformer-based Hebrew NLP models for Short Answer Scoring in Biology

Abigail Gurin Schleifer, Beata Beigman Klebanov, Moriah Ariely, Giora Alexandron
{"title":"Transformer-based Hebrew NLP models for Short Answer Scoring in Biology","authors":"Abigail Gurin Schleifer, Beata Beigman Klebanov, Moriah Ariely, Giora Alexandron","doi":"10.18653/v1/2023.bea-1.46","DOIUrl":null,"url":null,"abstract":"Pre-trained large language models (PLMs) are adaptable to a wide range of downstream tasks by fine-tuning their rich contextual embeddings to the task, often without requiring much task-specific data. In this paper, we explore the use of a recently developed Hebrew PLM aleph-BERT for automated short answer grading of high school biology items. We show that the alephBERT-based system outperforms a strong CNN-based baseline, and that it general-izes unexpectedly well in a zero-shot paradigm to items on an unseen topic that address the same underlying biological concepts, opening up the possibility of automatically assessing new items without item-specific fine-tuning.","PeriodicalId":363390,"journal":{"name":"Workshop on Innovative Use of NLP for Building Educational Applications","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Innovative Use of NLP for Building Educational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.bea-1.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pre-trained large language models (PLMs) are adaptable to a wide range of downstream tasks by fine-tuning their rich contextual embeddings to the task, often without requiring much task-specific data. In this paper, we explore the use of a recently developed Hebrew PLM aleph-BERT for automated short answer grading of high school biology items. We show that the alephBERT-based system outperforms a strong CNN-based baseline, and that it general-izes unexpectedly well in a zero-shot paradigm to items on an unseen topic that address the same underlying biological concepts, opening up the possibility of automatically assessing new items without item-specific fine-tuning.
基于转换器的希伯来语NLP模型在生物学中的简答评分
预训练的大型语言模型(plm)通过微调其丰富的上下文嵌入到任务中来适应广泛的下游任务,通常不需要太多特定于任务的数据。在本文中,我们探讨了使用最近开发的希伯来PLM alpha - bert对高中生物项目进行自动简答评分。我们表明,基于alphabert的系统优于基于cnn的强大基线,并且它在零采样范式中对解决相同潜在生物学概念的未知主题的项目进行了出乎意料的良好泛化,从而开辟了在没有特定项目微调的情况下自动评估新项目的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信