{"title":"Transformer-based Hebrew NLP models for Short Answer Scoring in Biology","authors":"Abigail Gurin Schleifer, Beata Beigman Klebanov, Moriah Ariely, Giora Alexandron","doi":"10.18653/v1/2023.bea-1.46","DOIUrl":null,"url":null,"abstract":"Pre-trained large language models (PLMs) are adaptable to a wide range of downstream tasks by fine-tuning their rich contextual embeddings to the task, often without requiring much task-specific data. In this paper, we explore the use of a recently developed Hebrew PLM aleph-BERT for automated short answer grading of high school biology items. We show that the alephBERT-based system outperforms a strong CNN-based baseline, and that it general-izes unexpectedly well in a zero-shot paradigm to items on an unseen topic that address the same underlying biological concepts, opening up the possibility of automatically assessing new items without item-specific fine-tuning.","PeriodicalId":363390,"journal":{"name":"Workshop on Innovative Use of NLP for Building Educational Applications","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Innovative Use of NLP for Building Educational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.bea-1.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Pre-trained large language models (PLMs) are adaptable to a wide range of downstream tasks by fine-tuning their rich contextual embeddings to the task, often without requiring much task-specific data. In this paper, we explore the use of a recently developed Hebrew PLM aleph-BERT for automated short answer grading of high school biology items. We show that the alephBERT-based system outperforms a strong CNN-based baseline, and that it general-izes unexpectedly well in a zero-shot paradigm to items on an unseen topic that address the same underlying biological concepts, opening up the possibility of automatically assessing new items without item-specific fine-tuning.