{"title":"Simulating Fracture in Anisotropic Materials Containing Impurities","authors":"Avirup Mandal, P. Chaudhuri, S. Chaudhuri","doi":"10.1145/3561975.3562956","DOIUrl":null,"url":null,"abstract":"Fracture simulation of real-world materials is an exceptionally challenging problem due to complex material properties like anisotropic elasticity and the presence of material impurities. We present a graph-based finite element method to simulate dynamic fracture in anisotropic materials. We further enhance this model by developing a novel probabilistic damage mechanics for modelling materials with impurities using a random graph-based formulation. We demonstrate how this formulation can be used by artists for directing and controlling fracture. We simulate and render fractures for a diverse set of materials to demonstrate the potency and robustness of our methods.","PeriodicalId":246179,"journal":{"name":"Proceedings of the 15th ACM SIGGRAPH Conference on Motion, Interaction and Games","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM SIGGRAPH Conference on Motion, Interaction and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3561975.3562956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Fracture simulation of real-world materials is an exceptionally challenging problem due to complex material properties like anisotropic elasticity and the presence of material impurities. We present a graph-based finite element method to simulate dynamic fracture in anisotropic materials. We further enhance this model by developing a novel probabilistic damage mechanics for modelling materials with impurities using a random graph-based formulation. We demonstrate how this formulation can be used by artists for directing and controlling fracture. We simulate and render fractures for a diverse set of materials to demonstrate the potency and robustness of our methods.