Quasipolynomial Multicut-mimicking Networks and Kernels for Multiway Cut Problems

Magnus Wahlström
{"title":"Quasipolynomial Multicut-mimicking Networks and Kernels for Multiway Cut Problems","authors":"Magnus Wahlström","doi":"10.1145/3501304","DOIUrl":null,"url":null,"abstract":"We show the existence of an exact mimicking network of kO(log k) edges for minimum multicuts over a set of terminals in an undirected graph, where k is the total capacity of the terminals, i.e., the sum of the degrees of the terminal vertices. Furthermore, using the best available approximation algorithm for Small Set Expansion, we show that a mimicking network of kO(log3 k) edges can be computed in randomized polynomial time. As a consequence, we show quasipolynomial kernels for several problems, including Edge Multiway Cut, Group Feedback Edge Set for an arbitrary group, and Edge Multicut parameterized by the solution size and the number of cut requests. The result combines the matroid-based irrelevant edge approach used in the kernel for s-Multiway Cut with a recursive decomposition and sparsification of the graph along sparse cuts. This is the first progress on the kernelization of Multiway Cut problems since the kernel for s-Multiway Cut for constant value of s (Kratsch and Wahlström, FOCS 2012).","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3501304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We show the existence of an exact mimicking network of kO(log k) edges for minimum multicuts over a set of terminals in an undirected graph, where k is the total capacity of the terminals, i.e., the sum of the degrees of the terminal vertices. Furthermore, using the best available approximation algorithm for Small Set Expansion, we show that a mimicking network of kO(log3 k) edges can be computed in randomized polynomial time. As a consequence, we show quasipolynomial kernels for several problems, including Edge Multiway Cut, Group Feedback Edge Set for an arbitrary group, and Edge Multicut parameterized by the solution size and the number of cut requests. The result combines the matroid-based irrelevant edge approach used in the kernel for s-Multiway Cut with a recursive decomposition and sparsification of the graph along sparse cuts. This is the first progress on the kernelization of Multiway Cut problems since the kernel for s-Multiway Cut for constant value of s (Kratsch and Wahlström, FOCS 2012).
多路切割问题的拟多项式多路模拟网络和核
我们证明了无向图中一组终端上的最小多截点的精确模拟网络存在kO(log k)条边,其中k是终端的总容量,即终端顶点的度之和。此外,利用小集展开的最佳逼近算法,我们证明了kO(log3k)条边的模拟网络可以在随机多项式时间内计算出来。因此,我们展示了几个问题的拟多项式核,包括边缘多路切割,任意组的组反馈边缘集,以及由解决方案大小和切割请求数量参数化的边缘多路切割。该结果结合了s-多路切割核中使用的基于矩阵的不相关边缘方法,以及沿着稀疏切割的图的递归分解和稀疏化。这是自s-Multiway Cut (s为定值)的核以来,多路切割问题核化的第一个进展(Kratsch and Wahlström, FOCS 2012)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信