Medical Image Segmentation for Skin Lesion Detection via Topological Data Analysis

N. Jazayeri, Farnaz Jazayeri, H. Sajedi
{"title":"Medical Image Segmentation for Skin Lesion Detection via Topological Data Analysis","authors":"N. Jazayeri, Farnaz Jazayeri, H. Sajedi","doi":"10.1109/IMCOM53663.2022.9721758","DOIUrl":null,"url":null,"abstract":"According to the WHO, two individuals die every hour from skin cancer and about 9500 people get skin cancer every day just in the United States. Various computer vision algorithms have been introduced for skin lesion detection, classification, and segmentation. This paper proposes a new segmentation-based algorithm in order to select target components using the persistence diagram of the input images. The results, in comparison with the existing seven different both clustering- and histogram-based segmentation methods using three metrics, show improved performance. Medical image segmentation is an essential task in computer-aided diagnosis. The main improvement of our method is to detect one lesion component by changing the persistent diagram threshold more cautiously. Sparse matrix implementation by Ripser packages effectively computes 2594 training images in less than an hour. The experimental results on the ISIC dataset suggest that using our framework can improve the accuracy up to 88.57% and achieve advanced performance in the segmentation of skin lesions.","PeriodicalId":367038,"journal":{"name":"2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCOM53663.2022.9721758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

According to the WHO, two individuals die every hour from skin cancer and about 9500 people get skin cancer every day just in the United States. Various computer vision algorithms have been introduced for skin lesion detection, classification, and segmentation. This paper proposes a new segmentation-based algorithm in order to select target components using the persistence diagram of the input images. The results, in comparison with the existing seven different both clustering- and histogram-based segmentation methods using three metrics, show improved performance. Medical image segmentation is an essential task in computer-aided diagnosis. The main improvement of our method is to detect one lesion component by changing the persistent diagram threshold more cautiously. Sparse matrix implementation by Ripser packages effectively computes 2594 training images in less than an hour. The experimental results on the ISIC dataset suggest that using our framework can improve the accuracy up to 88.57% and achieve advanced performance in the segmentation of skin lesions.
基于拓扑数据分析的医学图像分割用于皮肤病变检测
根据世界卫生组织的数据,每小时就有两人死于皮肤癌,仅在美国,每天就有大约9500人患皮肤癌。各种计算机视觉算法已经被引入到皮肤损伤的检测、分类和分割中。本文提出了一种新的基于分割的算法,利用输入图像的持久图来选择目标组件。结果表明,与现有的7种不同的基于聚类和直方图的分割方法相比,使用3个指标,显示出改进的性能。医学图像分割是计算机辅助诊断中的一项重要任务。该方法的主要改进是通过更谨慎地改变持久图阈值来检测一个病变成分。利用Ripser包实现的稀疏矩阵在不到1小时的时间内有效地计算出2594张训练图像。在ISIC数据集上的实验结果表明,使用我们的框架可以将准确率提高到88.57%,在皮肤病变分割方面取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信