Richardson Extrapolation Techniques for the Pricing of American-Style Options

San‐Lin Chung, Chuang-Chang Chang, R. Stapleton
{"title":"Richardson Extrapolation Techniques for the Pricing of American-Style Options","authors":"San‐Lin Chung, Chuang-Chang Chang, R. Stapleton","doi":"10.2139/ssrn.313962","DOIUrl":null,"url":null,"abstract":"In this article, the authors reexamine the American‐style option pricing formula of R. Geske and H.E. Johnson (1984), and extend the analysis by deriving a modified formula that can overcome the possibility of nonuniform convergence (which is likely to occur for nonstandard American options whose exercise boundary is discontinuous) encountered in the original Geske–Johnson methodology. Furthermore, they propose a numerical method, the Repeated‐Richardson extrapolation, which allows the estimation of the interval of true option values and the determination of the number of options needed for an approximation to achieve a given desired accuracy. Using simulation results, our modified Geske–Johnson formula is shown to be more accurate than the original Geske–Johnson formula for pricing American options, especially for nonstandard American options. This study also illustrates that the Repeated‐Richardson extrapolation approach can estimate the interval of true American option values extremely well. Finally, the authors investigate the possibility of combining the binomial Black–Scholes method proposed by M. Broadie and J.B. Detemple (1996) with the Repeated‐Richardson extrapolation technique. © 2007 Wiley Periodicals, Inc. Jrl Fut Mark 27:791–817, 2007","PeriodicalId":113051,"journal":{"name":"EFMA 2002 London Meetings (Archive)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EFMA 2002 London Meetings (Archive)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.313962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

Abstract

In this article, the authors reexamine the American‐style option pricing formula of R. Geske and H.E. Johnson (1984), and extend the analysis by deriving a modified formula that can overcome the possibility of nonuniform convergence (which is likely to occur for nonstandard American options whose exercise boundary is discontinuous) encountered in the original Geske–Johnson methodology. Furthermore, they propose a numerical method, the Repeated‐Richardson extrapolation, which allows the estimation of the interval of true option values and the determination of the number of options needed for an approximation to achieve a given desired accuracy. Using simulation results, our modified Geske–Johnson formula is shown to be more accurate than the original Geske–Johnson formula for pricing American options, especially for nonstandard American options. This study also illustrates that the Repeated‐Richardson extrapolation approach can estimate the interval of true American option values extremely well. Finally, the authors investigate the possibility of combining the binomial Black–Scholes method proposed by M. Broadie and J.B. Detemple (1996) with the Repeated‐Richardson extrapolation technique. © 2007 Wiley Periodicals, Inc. Jrl Fut Mark 27:791–817, 2007
美式期权定价的Richardson外推技术
在本文中,作者重新审视了R. Geske和H.E. Johnson(1984)的美式期权定价公式,并通过推导一个修正公式来扩展分析,该公式可以克服原始Geske - Johnson方法中遇到的非均匀收敛的可能性(这可能发生在行使边界不连续的非标准美式期权中)。此外,他们提出了一种数值方法,即重复-理查德森外推法,该方法可以估计真实期权值的区间,并确定逼近所需的期权数量,以达到给定的期望精度。仿真结果表明,本文提出的修正Geske-Johnson公式比原Geske-Johnson公式对美式期权,特别是非标准美式期权的定价更为准确。本研究还表明,重复-理查德森外推法可以很好地估计真实美式期权价值的区间。最后,作者探讨了将M. Broadie和J.B. Detemple(1996)提出的二项式Black-Scholes方法与repeat - Richardson外推技术相结合的可能性。©2007 Wiley期刊公司马可福音27:791-817,2007
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信