The Cayley transform in complex, real and graded K-theory

C. Bourne, J. Kellendonk, A. Rennie
{"title":"The Cayley transform in complex, real and graded K-theory","authors":"C. Bourne, J. Kellendonk, A. Rennie","doi":"10.1142/S0129167X20500743","DOIUrl":null,"url":null,"abstract":"We use the Cayley transform to provide an explicit isomorphism at the level of cycles from van Daele $K$-theory to $KK$-theory for graded $C^*$-algebras with a real structure. Isomorphisms between $KK$-theory and complex or real $K$-theory for ungraded $C^*$-algebras are a special case of this map. In all cases our map is compatible with the computational techniques required in physical and geometrical applications, in particular index pairings and Kasparov products. We provide applications to real $K$-theory and topological phases of matter.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129167X20500743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We use the Cayley transform to provide an explicit isomorphism at the level of cycles from van Daele $K$-theory to $KK$-theory for graded $C^*$-algebras with a real structure. Isomorphisms between $KK$-theory and complex or real $K$-theory for ungraded $C^*$-algebras are a special case of this map. In all cases our map is compatible with the computational techniques required in physical and geometrical applications, in particular index pairings and Kasparov products. We provide applications to real $K$-theory and topological phases of matter.
复、实、阶k理论中的Cayley变换
利用Cayley变换,给出了具有实结构的阶$C^*$-代数在环水平上从van Daele $K$-理论到$KK$-理论的显式同构。对于未分级的$C^*$-代数,$KK$-理论与复或实$K$-理论之间的同构是该映射的一个特例。在所有情况下,我们的地图都与物理和几何应用中所需的计算技术兼容,特别是索引配对和卡斯帕罗夫产品。我们提供了实际K理论和物质的拓扑相的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信