Salient object detection in image sequences via spatial-temporal cue

Chuang Gan, Zengchang Qin, Jia Xu, T. Wan
{"title":"Salient object detection in image sequences via spatial-temporal cue","authors":"Chuang Gan, Zengchang Qin, Jia Xu, T. Wan","doi":"10.1109/VCIP.2013.6706438","DOIUrl":null,"url":null,"abstract":"Contemporary video search and categorization are non-trivial tasks due to the massively increasing amount and content variety of videos. We put forward the study of visual saliency models in video. Such a model is employed to identify salient objects from the image background. Starting from the observation that motion information in video often attracts more human attention compared to static images, we devise a region contrast based saliency detection model using spatial-temporal cues (RCST). We introduce and study four saliency principles to realize the RCST. This generalizes the previous static image for saliency computational model to video. We conduct experiments on a publicly available video segmentation database where our method significantly outperforms seven state-of-the-art methods with respect to PR curve, ROC curve and visual comparison.","PeriodicalId":407080,"journal":{"name":"2013 Visual Communications and Image Processing (VCIP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2013.6706438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Contemporary video search and categorization are non-trivial tasks due to the massively increasing amount and content variety of videos. We put forward the study of visual saliency models in video. Such a model is employed to identify salient objects from the image background. Starting from the observation that motion information in video often attracts more human attention compared to static images, we devise a region contrast based saliency detection model using spatial-temporal cues (RCST). We introduce and study four saliency principles to realize the RCST. This generalizes the previous static image for saliency computational model to video. We conduct experiments on a publicly available video segmentation database where our method significantly outperforms seven state-of-the-art methods with respect to PR curve, ROC curve and visual comparison.
基于时空线索的图像序列显著目标检测
由于视频数量和内容的大量增加,当代视频搜索和分类是一项非常重要的任务。提出了视频中视觉显著性模型的研究。该模型用于从图像背景中识别显著目标。从观察到视频中的运动信息往往比静态图像更能吸引人们的注意力开始,我们设计了一个基于区域对比度的显著性检测模型,该模型使用时空线索(RCST)。我们介绍并研究了实现RCST的四种显著性原则。将以往的静态图像显著性计算模型推广到视频中。我们在一个公开可用的视频分割数据库上进行实验,我们的方法在PR曲线、ROC曲线和视觉比较方面明显优于7种最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信