Discovering Emerging Patterns from Medical Opinions about the Decrease of Autopsies Performed in a Mexican Hospital

Ingrid Aylin Ríos-Méndez, L. Rodríguez-Mazahua, J. P. Guzmán, Isaac Machorro-Cano, S. G. Peláez-Camarena, Celia Romero Torres, Hilarión Muñoz Contreras
{"title":"Discovering Emerging Patterns from Medical Opinions about the Decrease of Autopsies Performed in a Mexican Hospital","authors":"Ingrid Aylin Ríos-Méndez, L. Rodríguez-Mazahua, J. P. Guzmán, Isaac Machorro-Cano, S. G. Peláez-Camarena, Celia Romero Torres, Hilarión Muñoz Contreras","doi":"10.1109/CASE48305.2020.9216751","DOIUrl":null,"url":null,"abstract":"Emerging Pattern Mining (EPM) is a data mining task that finds discriminative characteristics between classes or data sets. In this paper, several EPM algorithms were applied to a data set which contains the opinions of the medical staff from a Mexican hospital about the decrease of autopsies. We consider two attributes as class labels: motives for autopsy acceptance and motives for autopsy rejection in order to find aspects like medical training and medical experience that imply that physicians consider reasons for requesting or rejecting autopsies.","PeriodicalId":212181,"journal":{"name":"2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE48305.2020.9216751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Emerging Pattern Mining (EPM) is a data mining task that finds discriminative characteristics between classes or data sets. In this paper, several EPM algorithms were applied to a data set which contains the opinions of the medical staff from a Mexican hospital about the decrease of autopsies. We consider two attributes as class labels: motives for autopsy acceptance and motives for autopsy rejection in order to find aspects like medical training and medical experience that imply that physicians consider reasons for requesting or rejecting autopsies.
从医学观点中发现墨西哥医院尸检减少的新模式
新兴模式挖掘(EPM)是一种数据挖掘任务,用于发现类或数据集之间的区别特征。本文将几种EPM算法应用于包含墨西哥一家医院医务人员关于减少尸体解剖的意见的数据集。我们考虑两种属性作为类别标签:接受尸检的动机和拒绝尸检的动机,以便找到诸如医疗培训和医疗经验等方面,暗示医生考虑要求或拒绝尸检的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信