ABTD-Net: Autonomous Baggage Threat Detection Networks for X-ray Images

Wen Liu, Degang Sun, Yan Wang, Zhongyuan Chen, Xinbo Han, Haitian Yang
{"title":"ABTD-Net: Autonomous Baggage Threat Detection Networks for X-ray Images","authors":"Wen Liu, Degang Sun, Yan Wang, Zhongyuan Chen, Xinbo Han, Haitian Yang","doi":"10.1109/ICME55011.2023.00214","DOIUrl":null,"url":null,"abstract":"Automated security screening has a significant role In protecting public spaces from security threats by employing X-ray images to detect prohibited items. However, there are challenges of noise production due to squeezing, occlusion, and penetration of luggage objects. Additionally, the hues of objects are monotonous and lack luster. To solve these problems, we propose an Autonomous Baggage Threat Detection Network (ABTD-Net) for accurate prohibited item detection. To tackle the difficulty of capturing distinctive visual features, we constructed a Feature Adjustment Head (FAH) to refine pyramid features. Specifically, we designed an Attention Module (AM) at several places after initially using a Dense Unidirectional Propagation (DUP) to filter noise. Furthermore, we created a Feature Fusion Head (FFH) that dynamically fuses hierarchical visual information under object occlusion, including early-fusion and late-fusion. Extensive experiments on security inspection X-ray datasets OPIXray and HiXray demonstrate the superiority of our proposed method.","PeriodicalId":321830,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo (ICME)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME55011.2023.00214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Automated security screening has a significant role In protecting public spaces from security threats by employing X-ray images to detect prohibited items. However, there are challenges of noise production due to squeezing, occlusion, and penetration of luggage objects. Additionally, the hues of objects are monotonous and lack luster. To solve these problems, we propose an Autonomous Baggage Threat Detection Network (ABTD-Net) for accurate prohibited item detection. To tackle the difficulty of capturing distinctive visual features, we constructed a Feature Adjustment Head (FAH) to refine pyramid features. Specifically, we designed an Attention Module (AM) at several places after initially using a Dense Unidirectional Propagation (DUP) to filter noise. Furthermore, we created a Feature Fusion Head (FFH) that dynamically fuses hierarchical visual information under object occlusion, including early-fusion and late-fusion. Extensive experiments on security inspection X-ray datasets OPIXray and HiXray demonstrate the superiority of our proposed method.
ABTD-Net:用于x射线图像的自主行李威胁检测网络
自动保安检查利用x光图像侦测违禁物品,在保护公众地方免受保安威胁方面发挥重要作用。然而,由于行李物体的挤压、遮挡和穿透,存在噪声产生的挑战。此外,物体的色调单调,缺乏光泽。为了解决这些问题,我们提出了一个自动行李威胁检测网络(ABTD-Net)来精确检测违禁物品。为了解决捕捉独特视觉特征的困难,我们构建了一个特征调整头(FAH)来细化金字塔特征。具体来说,我们在最初使用密集单向传播(DUP)过滤噪声后,在几个地方设计了一个注意模块(AM)。此外,我们创建了一个特征融合头(FFH)来动态融合目标遮挡下的分层视觉信息,包括早期融合和后期融合。在安全检查x射线数据集OPIXray和HiXray上的大量实验证明了我们提出的方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信