Cline: new multivariate decision tree construction heuristics

M. Amasyali, O. Ersoy
{"title":"Cline: new multivariate decision tree construction heuristics","authors":"M. Amasyali, O. Ersoy","doi":"10.1109/CIMA.2005.1662359","DOIUrl":null,"url":null,"abstract":"Decision trees are often used in pattern recognition and regression problems. They are attractive due to high performance and easy-to-understand rules. Many different decision tree construction algorithms have been developed because of their popularity. In this work, we describe some new heuristic tree construction algorithms and test with 8 benchmark datasets. We compare the new method with other 21 tree induction algorithms. The results show that cline heuristics can be used in all types of classification problems because of its simplicity and acceptable performance","PeriodicalId":306045,"journal":{"name":"2005 ICSC Congress on Computational Intelligence Methods and Applications","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 ICSC Congress on Computational Intelligence Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMA.2005.1662359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Decision trees are often used in pattern recognition and regression problems. They are attractive due to high performance and easy-to-understand rules. Many different decision tree construction algorithms have been developed because of their popularity. In this work, we describe some new heuristic tree construction algorithms and test with 8 benchmark datasets. We compare the new method with other 21 tree induction algorithms. The results show that cline heuristics can be used in all types of classification problems because of its simplicity and acceptable performance
新的多元决策树构造启发式方法
决策树常用于模式识别和回归问题。它们因高性能和易于理解的规则而具有吸引力。由于决策树构造算法的普及,人们开发了许多不同的决策树构造算法。在这项工作中,我们描述了一些新的启发式树构建算法,并在8个基准数据集上进行了测试。我们将新方法与其他21种树归纳算法进行了比较。结果表明,线性启发式算法具有简单、可接受的性能,可用于各种类型的分类问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信