Prediction of postoperative recovery based on a computational rules extractor

Yi-Zeng Hsieh, Chen-Hsu Wang, M. Su, Ching-Hu Lu, Jen-Chih Yu, Yi Min Chiang
{"title":"Prediction of postoperative recovery based on a computational rules extractor","authors":"Yi-Zeng Hsieh, Chen-Hsu Wang, M. Su, Ching-Hu Lu, Jen-Chih Yu, Yi Min Chiang","doi":"10.1109/ICCE-TW.2015.7216928","DOIUrl":null,"url":null,"abstract":"One important factor for the patients in a postoperative recovery is hypothermia. The doctor must decide whether the patients should be sent to another place with better medical therapy. We therefore adopt the proposed PSO (particle swarm optimization) based Fuzzy classifier to retrieve the crisp rules from the postoperative given medical data from UCI machine learning database, where the rules can be used to assist in doctor diagnosis. The average correct ratio of our prediction for the postoperative recovery is about 84%.","PeriodicalId":340402,"journal":{"name":"2015 IEEE International Conference on Consumer Electronics - Taiwan","volume":"341 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2015.7216928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

One important factor for the patients in a postoperative recovery is hypothermia. The doctor must decide whether the patients should be sent to another place with better medical therapy. We therefore adopt the proposed PSO (particle swarm optimization) based Fuzzy classifier to retrieve the crisp rules from the postoperative given medical data from UCI machine learning database, where the rules can be used to assist in doctor diagnosis. The average correct ratio of our prediction for the postoperative recovery is about 84%.
基于计算规则提取器的术后恢复预测
患者术后恢复的一个重要因素是体温过低。医生必须决定是否应该把病人送到另一个医疗条件更好的地方。因此,我们采用所提出的基于粒子群优化(PSO)的模糊分类器,从UCI机器学习数据库的术后给定医疗数据中检索出清晰的规则,这些规则可用于辅助医生诊断。我们预测术后恢复的平均正确率约为84%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信