Improved Distributed Delta-Coloring

M. Ghaffari, J. Hirvonen, F. Kuhn, Yannic Maus
{"title":"Improved Distributed Delta-Coloring","authors":"M. Ghaffari, J. Hirvonen, F. Kuhn, Yannic Maus","doi":"10.1145/3212734.3212764","DOIUrl":null,"url":null,"abstract":"We present a randomized distributed algorithm that computes a Δ- coloring in any non-complete graph with maximum degree Δ ≥ 4 in O(log Δ) +2O( √ log log n) rounds, as well as a randomized algorithm that computes a Δ-coloring in O((log logn)2) rounds when Δ ε [3,O(1)]. Both these algorithms improve on an O(log3 n/ log Δ)- round algorithm of Panconesi and Srinivasan [STOC'1993], which has remained the state of the art for the past 25 years. Moreover, the latter algorithm gets (exponentially) closer to an Ω(log logn) round lower bound of Brandt et al. [STOC'16].","PeriodicalId":198284,"journal":{"name":"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3212734.3212764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

We present a randomized distributed algorithm that computes a Δ- coloring in any non-complete graph with maximum degree Δ ≥ 4 in O(log Δ) +2O( √ log log n) rounds, as well as a randomized algorithm that computes a Δ-coloring in O((log logn)2) rounds when Δ ε [3,O(1)]. Both these algorithms improve on an O(log3 n/ log Δ)- round algorithm of Panconesi and Srinivasan [STOC'1993], which has remained the state of the art for the past 25 years. Moreover, the latter algorithm gets (exponentially) closer to an Ω(log logn) round lower bound of Brandt et al. [STOC'16].
改进的分布式delta着色
我们提出了一种随机分布算法,在O(log Δ) +2O(√log logn)轮中计算最大度Δ≥4的任何非完全图的Δ-着色,以及在Δ ε [3,o(1)]时在O((log logn)2)轮中计算Δ-coloring的随机化算法。这两种算法都改进了Panconesi和Srinivasan [STOC'1993]的O(log3 n/ log Δ)轮算法,该算法在过去25年中一直处于最先进的水平。此外,后一种算法(指数)更接近于Brandt等人[STOC'16]的Ω(log logn)圆形下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信