Combinatorial Proofs and Decomposition Theorems for First-order Logic

Dominic J. D. Hughes, Lutz Straßburger, Jui-Hsuan Wu
{"title":"Combinatorial Proofs and Decomposition Theorems for First-order Logic","authors":"Dominic J. D. Hughes, Lutz Straßburger, Jui-Hsuan Wu","doi":"10.1109/LICS52264.2021.9470579","DOIUrl":null,"url":null,"abstract":"We uncover a close relationship between combinatorial and syntactic proofs for first-order logic (without equality). Whereas syntactic proofs are formalized in a deductive proof system based on inference rules, a combinatorial proof is a syntax-free presentation of a proof that is independent from any set of inference rules. We show that the two proof representations are related via a deep inference decomposition theorem that establishes a new kind of normal form for syntactic proofs. This yields (a) a simple proof of soundness and completeness for first-order combinatorial proofs, and (b) a full completeness theorem: every combinatorial proof is the image of a syntactic proof.","PeriodicalId":174663,"journal":{"name":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS52264.2021.9470579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We uncover a close relationship between combinatorial and syntactic proofs for first-order logic (without equality). Whereas syntactic proofs are formalized in a deductive proof system based on inference rules, a combinatorial proof is a syntax-free presentation of a proof that is independent from any set of inference rules. We show that the two proof representations are related via a deep inference decomposition theorem that establishes a new kind of normal form for syntactic proofs. This yields (a) a simple proof of soundness and completeness for first-order combinatorial proofs, and (b) a full completeness theorem: every combinatorial proof is the image of a syntactic proof.
一阶逻辑的组合证明与分解定理
我们揭示了一阶逻辑(无等式)的组合证明和句法证明之间的密切关系。虽然句法证明是在基于推理规则的演绎证明系统中形式化的,但组合证明是一种独立于任何推理规则集的证明的无语法表示。我们通过一个深度推理分解定理证明了这两种证明表示是相关的,该定理为句法证明建立了一种新的范式。这就产生了(a)一阶组合证明的完备性和完备性的简单证明,以及(b)一个完备性定理:每一个组合证明都是一个句法证明的映像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信