A semi-automatic method for extracting a taxonomy for nuclear knowledge using hierarchical document clustering based on concept sets

F. Braga, N. Ebecken
{"title":"A semi-automatic method for extracting a taxonomy for nuclear knowledge using hierarchical document clustering based on concept sets","authors":"F. Braga, N. Ebecken","doi":"10.1504/IJNKM.2013.054496","DOIUrl":null,"url":null,"abstract":"In this paper, we present a text mining approach for the semiautomatic extraction of taxonomy of concepts for nuclear knowledge and evaluate the achievable results. Taxonomies are a fundamental part of any knowledge management strategy or framework. We propose a method for hierarchical document clustering based on the notion of frequent concept sets. Most clustering algorithms treat documents as a bag of words and bypass the important relationships between words, such as synonyms. In this method, we consider the semantic relationship between words and use a domain thesaurus (ETDE/INIS) to identify concepts. To validate the method, we conducted a case study in which we implemented a prototype, generating a taxonomy for nuclear knowledge with the goal of conceptually mapping the scientific production of the Brazilian Nuclear Energy Commission (CNEN).","PeriodicalId":188437,"journal":{"name":"International Journal of Nuclear Knowledge Management","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nuclear Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNKM.2013.054496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we present a text mining approach for the semiautomatic extraction of taxonomy of concepts for nuclear knowledge and evaluate the achievable results. Taxonomies are a fundamental part of any knowledge management strategy or framework. We propose a method for hierarchical document clustering based on the notion of frequent concept sets. Most clustering algorithms treat documents as a bag of words and bypass the important relationships between words, such as synonyms. In this method, we consider the semantic relationship between words and use a domain thesaurus (ETDE/INIS) to identify concepts. To validate the method, we conducted a case study in which we implemented a prototype, generating a taxonomy for nuclear knowledge with the goal of conceptually mapping the scientific production of the Brazilian Nuclear Energy Commission (CNEN).
一种基于概念集的分层文档聚类半自动提取核知识分类的方法
本文提出了一种用于核知识概念分类半自动提取的文本挖掘方法,并对可实现的结果进行了评价。分类法是任何知识管理策略或框架的基本组成部分。提出了一种基于频繁概念集的分层文档聚类方法。大多数聚类算法将文档视为一袋单词,并绕过单词之间的重要关系,例如同义词。在该方法中,我们考虑词之间的语义关系,并使用领域同义词典(ETDE/INIS)来识别概念。为了验证该方法,我们进行了一个案例研究,其中我们实现了一个原型,生成了一个核知识分类,目标是在概念上绘制巴西核能委员会(CNEN)的科学生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信