Herbert De Oliveira, Marcelo Daride Gaspar, V. Azevedo, Paulo Salgado, Carmelo Bastos-Filho
{"title":"Localização Indoor por Meio de Aprendizagem de Máquina Apoiada por Beacons Virtuais","authors":"Herbert De Oliveira, Marcelo Daride Gaspar, V. Azevedo, Paulo Salgado, Carmelo Bastos-Filho","doi":"10.25286/repa.v7i2.2219","DOIUrl":null,"url":null,"abstract":"Este artigo apresenta uma solução ao problema de localização indoor por meio de aprendizagem de máquina com o apoio de um novo conceito denominado beacon virtual. Esse conceito mostrou consideráveis ganhos em desempenho em modelos onde a representatividade dos dados é crucial na precisão das predições do modelo. Beacons virtuais também podem ser úteis em ambientes onde a instalação de beacons de referência em determinados pontos poderiam gerar transtornos à movimentação de pessoas e objetos em geral. A título de comparação de desempenho, a solução foi implementada considerando quatro algoritmos diferentes de aprendizagem de máquina, sendo dois deles lineares e os outros dois não lineares. Validações com dados reais apontaram o modelo baseado em Multilayer Perceptron (MLP) como o modelo de melhor desempenho entre os quatro modelos considerados no que diz respeito ao menor erro entre a posição predita e a real, sendo que a aplicação do conceito de beacon virtual fora determinante para tal resultado.","PeriodicalId":331078,"journal":{"name":"Revista de Engenharia e Pesquisa Aplicada","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Engenharia e Pesquisa Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25286/repa.v7i2.2219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Este artigo apresenta uma solução ao problema de localização indoor por meio de aprendizagem de máquina com o apoio de um novo conceito denominado beacon virtual. Esse conceito mostrou consideráveis ganhos em desempenho em modelos onde a representatividade dos dados é crucial na precisão das predições do modelo. Beacons virtuais também podem ser úteis em ambientes onde a instalação de beacons de referência em determinados pontos poderiam gerar transtornos à movimentação de pessoas e objetos em geral. A título de comparação de desempenho, a solução foi implementada considerando quatro algoritmos diferentes de aprendizagem de máquina, sendo dois deles lineares e os outros dois não lineares. Validações com dados reais apontaram o modelo baseado em Multilayer Perceptron (MLP) como o modelo de melhor desempenho entre os quatro modelos considerados no que diz respeito ao menor erro entre a posição predita e a real, sendo que a aplicação do conceito de beacon virtual fora determinante para tal resultado.