{"title":"Expanded study of efn2 thermodynamic model performance on RnaPredict, an evolutionary algorithm for RNA folding","authors":"K. Wiese, A. Hendriks","doi":"10.1109/CIBCB.2010.5510321","DOIUrl":null,"url":null,"abstract":"The shape that organic molecules such as biopolymers form within organic systems largely determines the function said molecules perform. RNA is a biopolymer that plays a central part in several stages of protein synthesis, and also has structural, functional, and regulatory roles in the cell. In an ab initio case most common structure prediction techniques employ minimization of the free energy of a given RNA molecule via a thermodynamic model. RnaPredict is an evolutionary algorithm for RNA folding. This paper compares the performance of an advanced thermodynamic model, efn2, against the stacking-energy thermodynamic models INN and INN-HB on a test set containing 24 sequences from 4 rRNA subtypes. The prediction accuracy of efn2 is demonstrated on a majority of test sequences. A comparison is also made with the mfold prediction algorithm which demonstrated RnaPredict's comparable performance.","PeriodicalId":340637,"journal":{"name":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2010.5510321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The shape that organic molecules such as biopolymers form within organic systems largely determines the function said molecules perform. RNA is a biopolymer that plays a central part in several stages of protein synthesis, and also has structural, functional, and regulatory roles in the cell. In an ab initio case most common structure prediction techniques employ minimization of the free energy of a given RNA molecule via a thermodynamic model. RnaPredict is an evolutionary algorithm for RNA folding. This paper compares the performance of an advanced thermodynamic model, efn2, against the stacking-energy thermodynamic models INN and INN-HB on a test set containing 24 sequences from 4 rRNA subtypes. The prediction accuracy of efn2 is demonstrated on a majority of test sequences. A comparison is also made with the mfold prediction algorithm which demonstrated RnaPredict's comparable performance.