Y. Coudière, C. D. Lontsi, C. Pierre, Yvescoudì Ere, Charlie Douanla-Lontsi
{"title":"Rush-Larsen time-stepping methods of high order for stiff problems in cardiac electrophysiology","authors":"Y. Coudière, C. D. Lontsi, C. Pierre, Yvescoudì Ere, Charlie Douanla-Lontsi","doi":"10.1553/etna_vol52s342","DOIUrl":null,"url":null,"abstract":"The development of efficient solvers in cardiac electrophysiology requires high order (semi) explicit and stable time stepping methods. In this paper are introduced two new exponential integrators of orders 3 and 4. They generalize the order 2 Rush Larsen scheme derived by Perego and Veneziani [24] in 2009. They have been named Rush Larsen of order k, shortly RL k. The RL k schemes are explicit exponential multistep integrators. They display a simple general formulation and an easy implementation. The RL k schemes are shown to be stable under perturbation (or 0-stable) and con-vergent of order k. Their Dahlquist stability analysis is performed. They have a very large stability domain provided that the stabilizer associated with the method captures well enough the stiff modes of the problem. The RL k method is numerically studied as applied to the membrane equation in cardiac electrophysiology.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol52s342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The development of efficient solvers in cardiac electrophysiology requires high order (semi) explicit and stable time stepping methods. In this paper are introduced two new exponential integrators of orders 3 and 4. They generalize the order 2 Rush Larsen scheme derived by Perego and Veneziani [24] in 2009. They have been named Rush Larsen of order k, shortly RL k. The RL k schemes are explicit exponential multistep integrators. They display a simple general formulation and an easy implementation. The RL k schemes are shown to be stable under perturbation (or 0-stable) and con-vergent of order k. Their Dahlquist stability analysis is performed. They have a very large stability domain provided that the stabilizer associated with the method captures well enough the stiff modes of the problem. The RL k method is numerically studied as applied to the membrane equation in cardiac electrophysiology.