Rush-Larsen time-stepping methods of high order for stiff problems in cardiac electrophysiology

Y. Coudière, C. D. Lontsi, C. Pierre, Yvescoudì Ere, Charlie Douanla-Lontsi
{"title":"Rush-Larsen time-stepping methods of high order for stiff problems in cardiac electrophysiology","authors":"Y. Coudière, C. D. Lontsi, C. Pierre, Yvescoudì Ere, Charlie Douanla-Lontsi","doi":"10.1553/etna_vol52s342","DOIUrl":null,"url":null,"abstract":"The development of efficient solvers in cardiac electrophysiology requires high order (semi) explicit and stable time stepping methods. In this paper are introduced two new exponential integrators of orders 3 and 4. They generalize the order 2 Rush Larsen scheme derived by Perego and Veneziani [24] in 2009. They have been named Rush Larsen of order k, shortly RL k. The RL k schemes are explicit exponential multistep integrators. They display a simple general formulation and an easy implementation. The RL k schemes are shown to be stable under perturbation (or 0-stable) and con-vergent of order k. Their Dahlquist stability analysis is performed. They have a very large stability domain provided that the stabilizer associated with the method captures well enough the stiff modes of the problem. The RL k method is numerically studied as applied to the membrane equation in cardiac electrophysiology.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol52s342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The development of efficient solvers in cardiac electrophysiology requires high order (semi) explicit and stable time stepping methods. In this paper are introduced two new exponential integrators of orders 3 and 4. They generalize the order 2 Rush Larsen scheme derived by Perego and Veneziani [24] in 2009. They have been named Rush Larsen of order k, shortly RL k. The RL k schemes are explicit exponential multistep integrators. They display a simple general formulation and an easy implementation. The RL k schemes are shown to be stable under perturbation (or 0-stable) and con-vergent of order k. Their Dahlquist stability analysis is performed. They have a very large stability domain provided that the stabilizer associated with the method captures well enough the stiff modes of the problem. The RL k method is numerically studied as applied to the membrane equation in cardiac electrophysiology.
心脏电生理僵硬问题的高阶Rush-Larsen时间步进方法
开发有效的心脏电生理学求解方法需要高阶(半)显式和稳定的时间步进方法。本文介绍了两个新的3阶和4阶指数积分器。他们推广了Perego和Veneziani[24]在2009年导出的2阶Rush Larsen格式。它们被命名为k阶的Rush Larsen,简称RL k。RL k格式是显式指数多步积分器。它们具有简单的一般公式和易于实现的特点。证明了RL k格式在扰动下是稳定的(或0稳定的),并且收敛于k阶。它们具有非常大的稳定域,前提是与该方法相关的稳定器能够很好地捕获问题的刚性模态。对rlk方法在心脏电生理膜方程中的应用进行了数值研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信