Leyla Bilge, D. Balzarotti, William K. Robertson, E. Kirda, Christopher Krügel
{"title":"Disclosure: detecting botnet command and control servers through large-scale NetFlow analysis","authors":"Leyla Bilge, D. Balzarotti, William K. Robertson, E. Kirda, Christopher Krügel","doi":"10.1145/2420950.2420969","DOIUrl":null,"url":null,"abstract":"Botnets continue to be a significant problem on the Internet. Accordingly, a great deal of research has focused on methods for detecting and mitigating the effects of botnets. Two of the primary factors preventing the development of effective large-scale, wide-area botnet detection systems are seemingly contradictory. On the one hand, technical and administrative restrictions result in a general unavailability of raw network data that would facilitate botnet detection on a large scale. On the other hand, were this data available, real-time processing at that scale would be a formidable challenge. In contrast to raw network data, NetFlow data is widely available. However, NetFlow data imposes several challenges for performing accurate botnet detection.\n In this paper, we present Disclosure, a large-scale, wide-area botnet detection system that incorporates a combination of novel techniques to overcome the challenges imposed by the use of NetFlow data. In particular, we identify several groups of features that allow Disclosure to reliably distinguish C&C channels from benign traffic using NetFlow records (i.e., flow sizes, client access patterns, and temporal behavior). To reduce Disclosure's false positive rate, we incorporate a number of external reputation scores into our system's detection procedure. Finally, we provide an extensive evaluation of Disclosure over two large, real-world networks. Our evaluation demonstrates that Disclosure is able to perform real-time detection of botnet C&C channels over datasets on the order of billions of flows per day.","PeriodicalId":397003,"journal":{"name":"Asia-Pacific Computer Systems Architecture Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"286","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Computer Systems Architecture Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2420950.2420969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 286
Abstract
Botnets continue to be a significant problem on the Internet. Accordingly, a great deal of research has focused on methods for detecting and mitigating the effects of botnets. Two of the primary factors preventing the development of effective large-scale, wide-area botnet detection systems are seemingly contradictory. On the one hand, technical and administrative restrictions result in a general unavailability of raw network data that would facilitate botnet detection on a large scale. On the other hand, were this data available, real-time processing at that scale would be a formidable challenge. In contrast to raw network data, NetFlow data is widely available. However, NetFlow data imposes several challenges for performing accurate botnet detection.
In this paper, we present Disclosure, a large-scale, wide-area botnet detection system that incorporates a combination of novel techniques to overcome the challenges imposed by the use of NetFlow data. In particular, we identify several groups of features that allow Disclosure to reliably distinguish C&C channels from benign traffic using NetFlow records (i.e., flow sizes, client access patterns, and temporal behavior). To reduce Disclosure's false positive rate, we incorporate a number of external reputation scores into our system's detection procedure. Finally, we provide an extensive evaluation of Disclosure over two large, real-world networks. Our evaluation demonstrates that Disclosure is able to perform real-time detection of botnet C&C channels over datasets on the order of billions of flows per day.