Yasara Peiris, Clara-Maria Barth, Elaine M. Huang, J. Bernard
{"title":"A Data-Centric Methodology and Task Typology for Time-Stamped Event Sequences","authors":"Yasara Peiris, Clara-Maria Barth, Elaine M. Huang, J. Bernard","doi":"10.1109/BELIV57783.2022.00012","DOIUrl":null,"url":null,"abstract":"Task abstractions and taxonomic structures for tasks are useful for designers of interactive data analysis approaches, serving as design targets and evaluation criteria alike. For individual data types, dataset-specific taxonomic structures capture unique data characteristics, while being generalizable across application domains. The creation of dataset-centric but domain-agnostic taxonomic structures is difficult, especially if best practices for a focused data type are still missing, observing experts is not feasible, and means for reflection and generalization are scarce. We discovered this need for methodological support when working with time-stamped event sequences, a datatype that has not yet been fully systematically studied in visualization research. To address this shortcoming, we present a methodology that enables researchers to abstract tasks and build dataset-centric taxonomic structures in five phases (data collection, coding, task categorization, task synthesis, and action-target-(criterion) crosscut). We validate the methodology by applying it to time-stamped event sequences and present a task typology that uses triples as a novel language of description for tasks: (1) action, (2) data target, and (3) data criterion. We further evaluate the descriptive power of the typology with a real-world case on cybersecurity.","PeriodicalId":299298,"journal":{"name":"2022 IEEE Evaluation and Beyond - Methodological Approaches for Visualization (BELIV)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Evaluation and Beyond - Methodological Approaches for Visualization (BELIV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BELIV57783.2022.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Task abstractions and taxonomic structures for tasks are useful for designers of interactive data analysis approaches, serving as design targets and evaluation criteria alike. For individual data types, dataset-specific taxonomic structures capture unique data characteristics, while being generalizable across application domains. The creation of dataset-centric but domain-agnostic taxonomic structures is difficult, especially if best practices for a focused data type are still missing, observing experts is not feasible, and means for reflection and generalization are scarce. We discovered this need for methodological support when working with time-stamped event sequences, a datatype that has not yet been fully systematically studied in visualization research. To address this shortcoming, we present a methodology that enables researchers to abstract tasks and build dataset-centric taxonomic structures in five phases (data collection, coding, task categorization, task synthesis, and action-target-(criterion) crosscut). We validate the methodology by applying it to time-stamped event sequences and present a task typology that uses triples as a novel language of description for tasks: (1) action, (2) data target, and (3) data criterion. We further evaluate the descriptive power of the typology with a real-world case on cybersecurity.