Approaches to Codec Independent Speaker Identification in Voip Speech

Anil Kumar Chilli, K. R. Prasanna Kumar, H. Murthy, C. Sekhar
{"title":"Approaches to Codec Independent Speaker Identification in Voip Speech","authors":"Anil Kumar Chilli, K. R. Prasanna Kumar, H. Murthy, C. Sekhar","doi":"10.1109/NCC.2018.8600267","DOIUrl":null,"url":null,"abstract":"The performance of automatic speaker identification (ASI) systems on Voice over Internet Protocol (VoIP) speech varies with the type of codec used in the VoIP communication. The type of codec used depends on the service provider of the user. Thus there is a need for the codec-independent ASI systems to identify the speaker. Three modeling approaches based on UBM-GMM framework and i-vector framework are proposed to identify the speaker independent of codec used. These frameworks are also evaluated for the mismatch conditions with respect to the codec used in training and testing. The proposed approaches are evaluated on VoIP speech from four codecs with different bit rates along with uncoded speech.","PeriodicalId":121544,"journal":{"name":"2018 Twenty Fourth National Conference on Communications (NCC)","volume":"28 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Twenty Fourth National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2018.8600267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The performance of automatic speaker identification (ASI) systems on Voice over Internet Protocol (VoIP) speech varies with the type of codec used in the VoIP communication. The type of codec used depends on the service provider of the user. Thus there is a need for the codec-independent ASI systems to identify the speaker. Three modeling approaches based on UBM-GMM framework and i-vector framework are proposed to identify the speaker independent of codec used. These frameworks are also evaluated for the mismatch conditions with respect to the codec used in training and testing. The proposed approaches are evaluated on VoIP speech from four codecs with different bit rates along with uncoded speech.
Voip语音中编解码器独立说话人识别方法
自动说话人识别(ASI)系统在VoIP (Voice over Internet Protocol)语音上的性能随VoIP通信中使用的编解码器类型的不同而不同。所使用的编解码器类型取决于用户的服务提供商。因此,需要独立于编解码器的ASI系统来识别说话人。提出了基于UBM-GMM框架和i-vector框架的三种独立于编解码器的说话人识别方法。这些框架还评估了与训练和测试中使用的编解码器相关的不匹配条件。在四种不同码率的VoIP语音以及未编码语音上对所提出的方法进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信