Machine Learning for Multiple Stage Phishing URL Prediction

Khalid Amen, Mohamad Zohdy, M. Mahmoud
{"title":"Machine Learning for Multiple Stage Phishing URL Prediction","authors":"Khalid Amen, Mohamad Zohdy, M. Mahmoud","doi":"10.1109/CSCI54926.2021.00049","DOIUrl":null,"url":null,"abstract":"Phishing is a fraudulent process and a form of cybercrime where an attacker tries to obtain sensitive information for malicious use. A phisher uses social engineering and technical deception to fetch private information from the web user. Previous Machine Learning (ML) approaches have been used to detect whether URLs are valid, or invalid. The purpose of this work is to detect, or predict, the three stages of Phishing URLs starting with valid, not enough info and invalid URLs. We will investigate different potential models that are trained by Machine Learning algorithms and find out which of these models has better accuracy.","PeriodicalId":206881,"journal":{"name":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI54926.2021.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Phishing is a fraudulent process and a form of cybercrime where an attacker tries to obtain sensitive information for malicious use. A phisher uses social engineering and technical deception to fetch private information from the web user. Previous Machine Learning (ML) approaches have been used to detect whether URLs are valid, or invalid. The purpose of this work is to detect, or predict, the three stages of Phishing URLs starting with valid, not enough info and invalid URLs. We will investigate different potential models that are trained by Machine Learning algorithms and find out which of these models has better accuracy.
多阶段网络钓鱼URL预测的机器学习
网络钓鱼是一种欺诈过程,也是网络犯罪的一种形式,攻击者试图获取敏感信息以进行恶意使用。网络钓鱼者使用社会工程和技术欺骗从网络用户那里获取私人信息。以前的机器学习(ML)方法已用于检测url是否有效或无效。这项工作的目的是检测或预测网络钓鱼url的三个阶段,从有效、信息不足和无效的url开始。我们将研究由机器学习算法训练的不同潜在模型,并找出哪些模型具有更好的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信