{"title":"Invariant solutions of the two-dimensional shallow water equations with a particular class of bottoms","authors":"S. Meleshko, N. Samatova","doi":"10.1063/1.5130801","DOIUrl":null,"url":null,"abstract":"The two-dimensional shallow water equations with a particular bottom and the Coriolis's force $f=f_{0}+\\Omega y$ are studied in this paper. The main goal of the paper is to describe all invariant solutions for which the reduced system is a system of ordinary differential equations. For solving the systems of ordinary differential equations we use the sixth-order Runge-Kutta method.","PeriodicalId":179088,"journal":{"name":"APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 11th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’19","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 11th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’19","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5130801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The two-dimensional shallow water equations with a particular bottom and the Coriolis's force $f=f_{0}+\Omega y$ are studied in this paper. The main goal of the paper is to describe all invariant solutions for which the reduced system is a system of ordinary differential equations. For solving the systems of ordinary differential equations we use the sixth-order Runge-Kutta method.