On the study of Rainbow Antimagic Coloring of Special Graphs

D. Dafik, Riniatul Nur Wahidah, E. R. Albirri, S. Husain
{"title":"On the study of Rainbow Antimagic Coloring of Special Graphs","authors":"D. Dafik, Riniatul Nur Wahidah, E. R. Albirri, S. Husain","doi":"10.18860/ca.v7i4.17836","DOIUrl":null,"url":null,"abstract":"Let  be a connected graph with vertex set  and edge set . The bijective function  is said to be a labeling of graph where  is the associated weight for edge . If every edge has different weight, the function  is called an edge antimagic vertex labeling. A path  in the vertex-labeled graph , with every two edges  satisfies  is said to be a rainbow path. The function  is called a rainbow antimagic labeling of , if for every two vertices , there exists a rainbow  path. Graph  admits the rainbow antimagic coloring, if we assign each edge  with the color of the edge weight  . The smallest number of colors induced from all edge weights of edge antimagic vertex labeling is called a rainbow antimagic connection number of , denoted by . In this paper, we study rainbow antimagic connection numbers of octopus graph , sandat graph , sun flower graph , volcano graph  and semi jahangir graph Jn.","PeriodicalId":388519,"journal":{"name":"CAUCHY: Jurnal Matematika Murni dan Aplikasi","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAUCHY: Jurnal Matematika Murni dan Aplikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18860/ca.v7i4.17836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let  be a connected graph with vertex set  and edge set . The bijective function  is said to be a labeling of graph where  is the associated weight for edge . If every edge has different weight, the function  is called an edge antimagic vertex labeling. A path  in the vertex-labeled graph , with every two edges  satisfies  is said to be a rainbow path. The function  is called a rainbow antimagic labeling of , if for every two vertices , there exists a rainbow  path. Graph  admits the rainbow antimagic coloring, if we assign each edge  with the color of the edge weight  . The smallest number of colors induced from all edge weights of edge antimagic vertex labeling is called a rainbow antimagic connection number of , denoted by . In this paper, we study rainbow antimagic connection numbers of octopus graph , sandat graph , sun flower graph , volcano graph  and semi jahangir graph Jn.
特殊图的彩虹反幻着色研究
设一个有顶点集和边集的连通图。双射函数被认为是图的标记,其中是边的关联权值。如果每条边都有不同的权值,则该函数称为边反幻顶点标记。在顶点标记的图中,每两条边都满足的路径被称为彩虹路径。如果对于每两个顶点,存在一条彩虹路径,则该函数称为彩虹反魔术标记。图承认彩虹反魔法着色,如果我们赋予每条边权值的颜色。的所有边权值诱导出的颜色的最小个数称为彩虹反魔连接数,表示为。本文研究了章鱼图、沙图、太阳花图、火山图和半贾汉吉尔图的彩虹反魔连接数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信