A new approach to enable gesture recognition in continuous data streams

Andreas Zinnen, B. Schiele
{"title":"A new approach to enable gesture recognition in continuous data streams","authors":"Andreas Zinnen, B. Schiele","doi":"10.1109/ISWC.2008.4911581","DOIUrl":null,"url":null,"abstract":"Gesture recognition has great potential for mobile and wearable computing. Most papers in this area focus on classifying different gestures, but do not evaluate the distinctiveness of gestures in continuous recordings of gestures in daily life. This paper presents a new approach for the important and challenging problem of gesture recognition in continuous data streams. We use turning points of arm movements to identify segments of interest in the continuous data stream. The recognition algorithm considers both the direction of movements between turning points and the shape of the turning points for classification. Using the new method, seven gestures of different complexity are evaluated against a realistic background class of daily gestures in five different scenarios.","PeriodicalId":336550,"journal":{"name":"2008 12th IEEE International Symposium on Wearable Computers","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 12th IEEE International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWC.2008.4911581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Gesture recognition has great potential for mobile and wearable computing. Most papers in this area focus on classifying different gestures, but do not evaluate the distinctiveness of gestures in continuous recordings of gestures in daily life. This paper presents a new approach for the important and challenging problem of gesture recognition in continuous data streams. We use turning points of arm movements to identify segments of interest in the continuous data stream. The recognition algorithm considers both the direction of movements between turning points and the shape of the turning points for classification. Using the new method, seven gestures of different complexity are evaluated against a realistic background class of daily gestures in five different scenarios.
一种在连续数据流中实现手势识别的新方法
手势识别在移动和可穿戴计算中具有巨大的潜力。这一领域的大多数论文关注的是对不同手势的分类,但没有对日常生活中连续记录的手势的独特性进行评估。针对连续数据流中手势识别这一重要且具有挑战性的问题,本文提出了一种新的方法。我们使用手臂运动的转折点来识别连续数据流中感兴趣的部分。该识别算法既考虑了拐点之间的运动方向,又考虑了拐点的形状进行分类。使用新方法,在五种不同场景的日常手势的现实背景类中评估了七种不同复杂性的手势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信