Adapting Tesseract for Complex Scripts: An Example for Urdu Nastalique

Q. Akram, S. Hussain, A. Niazi, Umair Anjum, Faheem Irfan
{"title":"Adapting Tesseract for Complex Scripts: An Example for Urdu Nastalique","authors":"Q. Akram, S. Hussain, A. Niazi, Umair Anjum, Faheem Irfan","doi":"10.1109/DAS.2014.45","DOIUrl":null,"url":null,"abstract":"Tesseract engine supports multilingual text recognition. However, the recognition of cursive scripts using Tesseract is a challenging task. In this paper, Tesseract engine is analyzed and modified for the recognition of Nastalique writing style for Urdu language which is a very complex and cursive writing style of Arabic script. Original Tesseract system has 65.59% and 65.84% accuracies for 14 and 16 font sizes respectively, whereas the modified system, with reduced search space, gives 97.87% and 97.71% accuracies respectively. The efficiency is also improved from an average of 170 milliseconds (ms) to an average of 84 ms for the recognition of Nastalique document images.","PeriodicalId":220495,"journal":{"name":"2014 11th IAPR International Workshop on Document Analysis Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th IAPR International Workshop on Document Analysis Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS.2014.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Tesseract engine supports multilingual text recognition. However, the recognition of cursive scripts using Tesseract is a challenging task. In this paper, Tesseract engine is analyzed and modified for the recognition of Nastalique writing style for Urdu language which is a very complex and cursive writing style of Arabic script. Original Tesseract system has 65.59% and 65.84% accuracies for 14 and 16 font sizes respectively, whereas the modified system, with reduced search space, gives 97.87% and 97.71% accuracies respectively. The efficiency is also improved from an average of 170 milliseconds (ms) to an average of 84 ms for the recognition of Nastalique document images.
为复杂的脚本改编Tesseract:以乌尔都语Nastalique为例
Tesseract引擎支持多语言文本识别。然而,使用Tesseract识别草书是一项具有挑战性的任务。乌尔都语是一种非常复杂的阿拉伯文草书体,本文对Tesseract引擎进行了分析和改进,用于乌尔都语Nastalique书写体的识别。原始Tesseract系统在14和16种字体大小下的准确率分别为65.59%和65.84%,而改进后的系统在缩小搜索空间后的准确率分别为97.87%和97.71%。对于Nastalique文档图像的识别,效率也从平均170毫秒(ms)提高到平均84毫秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信