Input feature selection for real-time transient stability assessment for artificial neural network (ANN) using ANN sensitivity analysis

A. Bahbah, A. Girgis
{"title":"Input feature selection for real-time transient stability assessment for artificial neural network (ANN) using ANN sensitivity analysis","authors":"A. Bahbah, A. Girgis","doi":"10.1109/PICA.1999.779510","DOIUrl":null,"url":null,"abstract":"This paper presents a method for the selection of the input parameters, and their ranking for feedforward artificial neural networks (FF-ANN) applications in transient stability assessment. The method utilizes feedforward artificial neural networks to estimate the sensitivity of the output to all inputs. An evaluation of most of the common inputs used by the researchers is made. Sensitivity analysis using ANN is performed on key parameters to obtain the optimal ranking of the ANN input features. The critical clearing time (CCT) is used to assess the transient stability of the system. The proposed method is applied to a simple power system to illustrate the concept. The preliminary results show that the proposed sensitivity factors are converging to stable values.","PeriodicalId":113146,"journal":{"name":"Proceedings of the 21st International Conference on Power Industry Computer Applications. Connecting Utilities. PICA 99. To the Millennium and Beyond (Cat. No.99CH36351)","volume":"2676 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st International Conference on Power Industry Computer Applications. Connecting Utilities. PICA 99. To the Millennium and Beyond (Cat. No.99CH36351)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICA.1999.779510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper presents a method for the selection of the input parameters, and their ranking for feedforward artificial neural networks (FF-ANN) applications in transient stability assessment. The method utilizes feedforward artificial neural networks to estimate the sensitivity of the output to all inputs. An evaluation of most of the common inputs used by the researchers is made. Sensitivity analysis using ANN is performed on key parameters to obtain the optimal ranking of the ANN input features. The critical clearing time (CCT) is used to assess the transient stability of the system. The proposed method is applied to a simple power system to illustrate the concept. The preliminary results show that the proposed sensitivity factors are converging to stable values.
基于人工神经网络灵敏度分析的实时暂态稳定评价输入特征选择
针对前馈人工神经网络在暂态稳定评估中的应用,提出了一种输入参数的选择和排序方法。该方法利用前馈人工神经网络来估计输出对所有输入的灵敏度。对研究人员使用的大多数常见输入进行了评估。利用神经网络对关键参数进行敏感性分析,得到神经网络输入特征的最优排序。临界清除时间(CCT)用于评估系统的暂态稳定性。将该方法应用于一个简单的电力系统来说明该概念。初步结果表明,所提出的敏感性因子收敛于稳定值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信