DNNET-Ensemble approach to detecting and identifying attacks in IoT environments

C. A. D. Souza, Carlos Becker Westphall, Jean D. G. Valencio, R. B. Machado, W. R. Bezerra
{"title":"DNNET-Ensemble approach to detecting and identifying attacks in IoT environments","authors":"C. A. D. Souza, Carlos Becker Westphall, Jean D. G. Valencio, R. B. Machado, W. R. Bezerra","doi":"10.5753/sbrc.2023.502","DOIUrl":null,"url":null,"abstract":"Special security techniques like intrusion detection mechanisms are indispensable in modern computer systems. It is important to detect and identify the attack in a category so that specific countermeasures for the threat category are solved. However, most existing multiclass detection approaches have some weaknesses, mainly related to detecting specific categories of attacks and problems with false positives. This article addresses this research problem and advances state-of-the-art, bringing contributions to a two-stage detection architecture called DNNET-Ensemble, combining binary and multiclass detection. The results obtained in experiments with renowned intrusion datasets demonstrate that the approach can achieve superior detection rates and false positives performance compared to other state-of-the-art approaches.","PeriodicalId":254689,"journal":{"name":"Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2023)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XLI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbrc.2023.502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Special security techniques like intrusion detection mechanisms are indispensable in modern computer systems. It is important to detect and identify the attack in a category so that specific countermeasures for the threat category are solved. However, most existing multiclass detection approaches have some weaknesses, mainly related to detecting specific categories of attacks and problems with false positives. This article addresses this research problem and advances state-of-the-art, bringing contributions to a two-stage detection architecture called DNNET-Ensemble, combining binary and multiclass detection. The results obtained in experiments with renowned intrusion datasets demonstrate that the approach can achieve superior detection rates and false positives performance compared to other state-of-the-art approaches.
dnnet集成方法检测和识别物联网环境中的攻击
在现代计算机系统中,入侵检测机制等特殊安全技术是不可或缺的。检测和识别某一类别的攻击,以便针对该威胁类别解决特定的应对措施,这一点非常重要。然而,大多数现有的多类检测方法都存在一些弱点,主要与检测特定类别的攻击和误报问题有关。本文解决了这一研究问题,并推进了最先进的技术,为一种称为DNNET-Ensemble的两阶段检测体系结构做出了贡献,该体系结构结合了二进制和多类检测。在著名入侵数据集上的实验结果表明,与其他先进的方法相比,该方法可以实现更高的检测率和误报性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信