Data Augmentation Methods and their Effects on Long-Range Dependence

M. Ghanbari, W. Kinsner
{"title":"Data Augmentation Methods and their Effects on Long-Range Dependence","authors":"M. Ghanbari, W. Kinsner","doi":"10.1109/ICCICC50026.2020.9450221","DOIUrl":null,"url":null,"abstract":"Data augmentation is a common method for expanding datasets to train machine learning models. In this paper, five different methods are used to obtain augmented sets. In addition, eight measures are used for experimental evaluation of datasets before and after data augmentation methods. The key requirement is that any data augmentation should not alter the fundamental properties and characteristics of the original dataset. This research shows how some data augmentation methods can destroy the long-range dependence of the Internet traffic data (ITD) with distributed denial of service (DDoS) attacks (DDoS ITD), and consequently alter the probability mass function (PMF) and data labelling (tagging) of the DDoS ITD.","PeriodicalId":212248,"journal":{"name":"2020 IEEE 19th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 19th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICC50026.2020.9450221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Data augmentation is a common method for expanding datasets to train machine learning models. In this paper, five different methods are used to obtain augmented sets. In addition, eight measures are used for experimental evaluation of datasets before and after data augmentation methods. The key requirement is that any data augmentation should not alter the fundamental properties and characteristics of the original dataset. This research shows how some data augmentation methods can destroy the long-range dependence of the Internet traffic data (ITD) with distributed denial of service (DDoS) attacks (DDoS ITD), and consequently alter the probability mass function (PMF) and data labelling (tagging) of the DDoS ITD.
数据增强方法及其对远程依赖性的影响
数据增强是扩展数据集以训练机器学习模型的常用方法。本文采用了五种不同的方法来获得增广集。此外,采用八项指标对数据增强方法前后的数据集进行实验评价。关键的要求是,任何数据增强都不应该改变原始数据集的基本属性和特征。本研究揭示了一些数据增强方法如何破坏互联网流量数据与分布式拒绝服务攻击(DDoS ITD)的远程依赖关系,从而改变DDoS ITD的概率质量函数(PMF)和数据标记(tagging)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信