Attribute Estimation Using Multi-CNNs from Hand Images

Yi-Chun Lin, Yusei Suzuki, Hiroya Kawai, Koichi Ito, Hwann-Tzong Chen, T. Aoki
{"title":"Attribute Estimation Using Multi-CNNs from Hand Images","authors":"Yi-Chun Lin, Yusei Suzuki, Hiroya Kawai, Koichi Ito, Hwann-Tzong Chen, T. Aoki","doi":"10.1109/APSIPAASC47483.2019.9023260","DOIUrl":null,"url":null,"abstract":"The human hand is one of the primary biometric traits in person authentication. A hand image also includes a lot of attribute information such as gender, age, skin color, accessory, and etc. Most conventional methods for hand-based biometric recognition rely on one distinctive attribute like palmprint and fingerprint. The other attributes as gender, age, skin color and accessory known as soft biometrics are expected to help identify individuals but are rarely used for identification. This paper proposes an attribute estimation method using multi-convolutional neural network (CNN) from hand images. We specially design new multi-CNN architectures dedicated to estimating multiple attributes from hand images. We train and test our models using 11K Hands, which consists of more than 10,000 images with 7 attributes and ID. The experimental results demonstrate that the proposed method exhibits the efficient performance on attribute estimation.","PeriodicalId":145222,"journal":{"name":"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPAASC47483.2019.9023260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The human hand is one of the primary biometric traits in person authentication. A hand image also includes a lot of attribute information such as gender, age, skin color, accessory, and etc. Most conventional methods for hand-based biometric recognition rely on one distinctive attribute like palmprint and fingerprint. The other attributes as gender, age, skin color and accessory known as soft biometrics are expected to help identify individuals but are rarely used for identification. This paper proposes an attribute estimation method using multi-convolutional neural network (CNN) from hand images. We specially design new multi-CNN architectures dedicated to estimating multiple attributes from hand images. We train and test our models using 11K Hands, which consists of more than 10,000 images with 7 attributes and ID. The experimental results demonstrate that the proposed method exhibits the efficient performance on attribute estimation.
基于手部图像的多cnn属性估计
人的手是人体身份认证的主要生物特征之一。手图像还包含许多属性信息,如性别、年龄、肤色、配饰等。大多数传统的基于手的生物特征识别方法依赖于一个独特的属性,如掌纹和指纹。其他属性,如性别、年龄、肤色和配饰,被称为软生物特征,有望帮助识别个人,但很少用于身份识别。提出了一种基于多卷积神经网络(CNN)的手部图像属性估计方法。我们专门设计了新的多cnn架构,致力于从手部图像中估计多个属性。我们使用11K Hands训练和测试我们的模型,该模型由10,000多张具有7个属性和ID的图像组成。实验结果表明,该方法具有较好的属性估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信