Intelligent Multi-Level Feature Fusion Using Remote Sensing and CNN Image Classification Algorithm

M. Altaee, Talib. A., M. Jalil, Ali. J., T. A. Alalwani
{"title":"Intelligent Multi-Level Feature Fusion Using Remote Sensing and CNN Image Classification Algorithm","authors":"M. Altaee, Talib. A., M. Jalil, Ali. J., T. A. Alalwani","doi":"10.54216/jisiot.090103","DOIUrl":null,"url":null,"abstract":"The collection of fetures in both multispectral and hyperspectral domains is possible with Hyperspectral Image (HSI). It comprises a vast array of multispectral bands with functional relationships. However, they become more complex when dealing with small samples. To tackle this issue, researchers employed a deep learning convolutionary neural network system (DL-CNN) and implemented a temporal abstraction strategy to grade HSI. This approach is an intelligent multi-level feature fusion that combines the temporal abstraction strategy and DL-CNN for HSI grading. Researchers have introduced the impact of seven separate classifiers in implementing the Location estimation on our broad CNN framework, which plays the shallow CNN model's main training phase. PSO, Adagrad, Plans to implement, Alexnet, Adam, Environmental benefits, and Nadam are the seven distinct remained significantly included in this analysis. A detailed study of the four multispectral remote sensing techniques sets showed the deep CNN system's supremacy followed with the HSI identification AlexNet Optimizer.","PeriodicalId":122556,"journal":{"name":"Journal of Intelligent Systems and Internet of Things","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems and Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/jisiot.090103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The collection of fetures in both multispectral and hyperspectral domains is possible with Hyperspectral Image (HSI). It comprises a vast array of multispectral bands with functional relationships. However, they become more complex when dealing with small samples. To tackle this issue, researchers employed a deep learning convolutionary neural network system (DL-CNN) and implemented a temporal abstraction strategy to grade HSI. This approach is an intelligent multi-level feature fusion that combines the temporal abstraction strategy and DL-CNN for HSI grading. Researchers have introduced the impact of seven separate classifiers in implementing the Location estimation on our broad CNN framework, which plays the shallow CNN model's main training phase. PSO, Adagrad, Plans to implement, Alexnet, Adam, Environmental benefits, and Nadam are the seven distinct remained significantly included in this analysis. A detailed study of the four multispectral remote sensing techniques sets showed the deep CNN system's supremacy followed with the HSI identification AlexNet Optimizer.
基于遥感和CNN图像分类算法的智能多层次特征融合
利用高光谱图像(HSI)可以同时收集多光谱和高光谱域的特征。它包含大量具有函数关系的多光谱波段。然而,当处理小样本时,它们变得更加复杂。为了解决这个问题,研究人员采用了深度学习卷积神经网络系统(DL-CNN),并实施了一种时间抽象策略来对HSI进行分级。该方法是一种将时间抽象策略和DL-CNN相结合的智能多层次特征融合方法,用于HSI分级。研究人员介绍了七个独立的分类器在我们的广义CNN框架上实现位置估计的影响,该框架起着浅层CNN模型的主要训练阶段。PSO、Adagrad、计划实施、Alexnet、Adam、环境效益和Nadam是这一分析中仍然重要的七个不同的项目。对四种多光谱遥感技术的详细研究表明,深度CNN系统的优势紧随其后的是HSI识别AlexNet优化器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信