A Hybrid Approach to Sentence Alignment Using Genetic Algorithm

M. Gautam, R. Sinha
{"title":"A Hybrid Approach to Sentence Alignment Using Genetic Algorithm","authors":"M. Gautam, R. Sinha","doi":"10.1109/ICCTA.2007.9","DOIUrl":null,"url":null,"abstract":"Sentence alignment in bilingual corpora has been an active research topic in the machine translation research groups. There have been multiple works in the past to align sentences in bilingual corpus in English and European languages and some Asian languages like Chinese and Japanese. This work introduces a novel approach for sentence alignment in bilingual corpora using lexical and statistical information about the language pair using genetic algorithm. The only lexical information used in this work is a restricted form of bilingual dictionary (incomplete). The algorithm works based on the weighted sum of a set of statistical parameters and the parameter denoting degree of dictionary match. No other lexical information like part of speech tagging, chunking, n-gram statistics etc has been used in this work. Our approach has been tested for structurally dissimilar language pair of English-Hindi and is shown to yield a high performance even under noisy conditions. We compare our results with that of Microsoft alignment tool on the same corpus and we find our results to be superior","PeriodicalId":308247,"journal":{"name":"2007 International Conference on Computing: Theory and Applications (ICCTA'07)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computing: Theory and Applications (ICCTA'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTA.2007.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Sentence alignment in bilingual corpora has been an active research topic in the machine translation research groups. There have been multiple works in the past to align sentences in bilingual corpus in English and European languages and some Asian languages like Chinese and Japanese. This work introduces a novel approach for sentence alignment in bilingual corpora using lexical and statistical information about the language pair using genetic algorithm. The only lexical information used in this work is a restricted form of bilingual dictionary (incomplete). The algorithm works based on the weighted sum of a set of statistical parameters and the parameter denoting degree of dictionary match. No other lexical information like part of speech tagging, chunking, n-gram statistics etc has been used in this work. Our approach has been tested for structurally dissimilar language pair of English-Hindi and is shown to yield a high performance even under noisy conditions. We compare our results with that of Microsoft alignment tool on the same corpus and we find our results to be superior
基于遗传算法的混合句子对齐方法
双语语料库中的句子对齐一直是机器翻译研究的热点。在过去,已经有很多工作来对齐英语、欧洲语言和一些亚洲语言(如汉语和日语)的双语语料库中的句子。本文介绍了一种基于遗传算法的双语语料库句子对齐的新方法,该方法利用了语言对的词汇和统计信息。本著作使用的唯一词汇信息是一本限制形式的双语词典(不完整)。该算法基于一组统计参数和表示字典匹配程度的参数的加权和。在这项工作中没有使用词性标注、分块、n-gram统计等其他词汇信息。我们的方法已经在结构不同的英语-印地语语言对中进行了测试,结果表明即使在嘈杂的条件下也能产生很高的性能。我们将我们的结果与Microsoft对齐工具在同一语料库上的结果进行了比较,我们发现我们的结果更优越
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信