{"title":"Intrinsic mirror symmetry and punctured\n Gromov-Witten invariants","authors":"M. Gross, Bernd S Siebert","doi":"10.1090/PSPUM/097.2/01705","DOIUrl":null,"url":null,"abstract":"This contribution to the 2015 AMS Summer Institute in Algebraic Geometry (Salt Lake City) announces a general mirror construction. This construction applies to log Calabi-Yau pairs (X,D) with maximal boundary D or to maximally unipotent degenerations of Calabi-Yau manifolds. The new ingredient is a notion of \"punctured Gromov-Witten invariant\", currently in progress with Abramovich and Chen. The mirror to a pair (X,D) is constructed as the spectrum of a ring defined using the punctured invariants of (X,D). An analogous construction leads to mirrors of Calabi-Yau manifolds. This can be viewed as a generalization of constructions developed jointly with Hacking and Keel in the case of log CY surfaces and K3 surfaces.","PeriodicalId":412716,"journal":{"name":"Algebraic Geometry: Salt Lake City\n 2015","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry: Salt Lake City\n 2015","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PSPUM/097.2/01705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41
Abstract
This contribution to the 2015 AMS Summer Institute in Algebraic Geometry (Salt Lake City) announces a general mirror construction. This construction applies to log Calabi-Yau pairs (X,D) with maximal boundary D or to maximally unipotent degenerations of Calabi-Yau manifolds. The new ingredient is a notion of "punctured Gromov-Witten invariant", currently in progress with Abramovich and Chen. The mirror to a pair (X,D) is constructed as the spectrum of a ring defined using the punctured invariants of (X,D). An analogous construction leads to mirrors of Calabi-Yau manifolds. This can be viewed as a generalization of constructions developed jointly with Hacking and Keel in the case of log CY surfaces and K3 surfaces.