Intrinsic mirror symmetry and punctured Gromov-Witten invariants

M. Gross, Bernd S Siebert
{"title":"Intrinsic mirror symmetry and punctured\n Gromov-Witten invariants","authors":"M. Gross, Bernd S Siebert","doi":"10.1090/PSPUM/097.2/01705","DOIUrl":null,"url":null,"abstract":"This contribution to the 2015 AMS Summer Institute in Algebraic Geometry (Salt Lake City) announces a general mirror construction. This construction applies to log Calabi-Yau pairs (X,D) with maximal boundary D or to maximally unipotent degenerations of Calabi-Yau manifolds. The new ingredient is a notion of \"punctured Gromov-Witten invariant\", currently in progress with Abramovich and Chen. The mirror to a pair (X,D) is constructed as the spectrum of a ring defined using the punctured invariants of (X,D). An analogous construction leads to mirrors of Calabi-Yau manifolds. This can be viewed as a generalization of constructions developed jointly with Hacking and Keel in the case of log CY surfaces and K3 surfaces.","PeriodicalId":412716,"journal":{"name":"Algebraic Geometry: Salt Lake City\n 2015","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry: Salt Lake City\n 2015","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PSPUM/097.2/01705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

This contribution to the 2015 AMS Summer Institute in Algebraic Geometry (Salt Lake City) announces a general mirror construction. This construction applies to log Calabi-Yau pairs (X,D) with maximal boundary D or to maximally unipotent degenerations of Calabi-Yau manifolds. The new ingredient is a notion of "punctured Gromov-Witten invariant", currently in progress with Abramovich and Chen. The mirror to a pair (X,D) is constructed as the spectrum of a ring defined using the punctured invariants of (X,D). An analogous construction leads to mirrors of Calabi-Yau manifolds. This can be viewed as a generalization of constructions developed jointly with Hacking and Keel in the case of log CY surfaces and K3 surfaces.
本征镜像对称和刺破的Gromov-Witten不变量
这是2015年AMS暑期代数几何学院(盐湖城)的贡献,宣布了一个一般的镜子结构。这种构造适用于最大边界为D的对数Calabi-Yau对(X,D)或Calabi-Yau流形的最大单幂退化。新的成分是“穿透格罗莫夫-维滕不变量”的概念,目前正在与阿布拉莫维奇和陈一起进行。对(X,D)的镜像构造为使用(X,D)的刺穿不变量定义的环的谱。类似的构造导致了Calabi-Yau流形的镜像。这可以看作是在log CY曲面和K3曲面的情况下,与Hacking和Keel共同开发的结构的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信