Fitting Wind Speed to a 3-Parameter Distribution Using Maximum Likelihood Technique

O. Kevin, Troon J. Benedict, Samuel Muthiga Ngaga
{"title":"Fitting Wind Speed to a 3-Parameter Distribution Using Maximum Likelihood Technique","authors":"O. Kevin, Troon J. Benedict, Samuel Muthiga Ngaga","doi":"10.11648/J.IJSD.20210701.11","DOIUrl":null,"url":null,"abstract":"Kenya is one of the countries in the world with a good quantity of wind. This makes the country to work on technologies that can help in harnessing the wind with a vision of achieving a total capacity of 2GW of wind energy by 2030. The objective of this research is to find the best three-parameter wind speed distribution for examining wind speed using the maximum likelihood fitting technique. To achieve the objective, the study used hourly wind speed data collected for a period of three years (2016 – 2018) from five sites within Narok County. The study examines the best distributions that the data fits and then conducted a suitability test of the distributions using the Kolmogorov-Smirnov test. The distribution parameters were fitted using maximum likelihood technique and model comparison test conducted using Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion (BIC) values with the decision rule that the best distribution relies on the distribution with the smaller AIC and BIC values. The research showed that the best distribution is the gamma distribution with the shape parameter of 2.071773, scale parameter of 1.120855, and threshold parameter of 0.1174. A conclusion that gamma distribution is the best three-parameter distribution for examining the Narok country wind speed data.","PeriodicalId":427819,"journal":{"name":"International Journal of Statistical Distributions and Applications","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Statistical Distributions and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJSD.20210701.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Kenya is one of the countries in the world with a good quantity of wind. This makes the country to work on technologies that can help in harnessing the wind with a vision of achieving a total capacity of 2GW of wind energy by 2030. The objective of this research is to find the best three-parameter wind speed distribution for examining wind speed using the maximum likelihood fitting technique. To achieve the objective, the study used hourly wind speed data collected for a period of three years (2016 – 2018) from five sites within Narok County. The study examines the best distributions that the data fits and then conducted a suitability test of the distributions using the Kolmogorov-Smirnov test. The distribution parameters were fitted using maximum likelihood technique and model comparison test conducted using Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion (BIC) values with the decision rule that the best distribution relies on the distribution with the smaller AIC and BIC values. The research showed that the best distribution is the gamma distribution with the shape parameter of 2.071773, scale parameter of 1.120855, and threshold parameter of 0.1174. A conclusion that gamma distribution is the best three-parameter distribution for examining the Narok country wind speed data.
用极大似然法拟合风速的三参数分布
肯尼亚是世界上风力充沛的国家之一。这使得该国致力于开发能够帮助利用风能的技术,以期到2030年实现总容量为2吉瓦的风能。本研究的目的是利用最大似然拟合技术寻找风速检验的最佳三参数风速分布。为了实现这一目标,该研究使用了从纳罗克县五个地点收集的三年(2016年至2018年)每小时风速数据。该研究考察了数据拟合的最佳分布,然后使用Kolmogorov-Smirnov检验对分布进行了适用性检验。采用极大似然技术拟合分布参数,并采用赤池信息准则(AIC)和贝叶斯信息准则(BIC)值进行模型比较检验,以AIC和BIC值较小的分布为最佳分布的决策规则。研究表明,最佳分布为gamma分布,其形状参数为2.071773,尺度参数为1.120855,阈值参数为0.1174。结论伽玛分布是检验纳罗克地区风速资料的最佳三参数分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信