A Combined Spatial Fuzzy C-Means and Level Set Approach for Endocardium Segmentation in MRI Image Series

Hossein Yousefi-Banaem, S. Kermani, Omid Srrafzadeh
{"title":"A Combined Spatial Fuzzy C-Means and Level Set Approach for Endocardium Segmentation in MRI Image Series","authors":"Hossein Yousefi-Banaem, S. Kermani, Omid Srrafzadeh","doi":"10.5812/ACVI.42840","DOIUrl":null,"url":null,"abstract":"Background: Obtaining accurate left ventricular (LV) endocardium segmentation requires the exclusion of the papillary muscles fromthecardiacwall,whichisasignificant,albeitchallenging,stepincardiacimageanalysis. Mostmedicalimagingsystemssuffer from noise in that it affects the processing procedure. We herein introduce a segmentation algorithm, which improves segmentation accuracy by excluding the papillary muscles and suppressing noise effects. Methods: We proposed a hybrid fuzzy-based level set method (LSM) to segment the cardiac wall in magnetic resonance imaging imageseries. Inthisapproach,weappliedimprovedspatialfuzzyc-means(FCM)onthegivenimageandthenutilizedtheobtained result as the initial contour for the LSM method to obtain more accurate segmentation results. Results: We compared the obtained results with those obtained via manual segmentation as the gold standard vis-à-vis accuracy, Jaccard coefficient, dice coefficient, and false positive ratio. Also, the robustness of the proposed method to the noise was tested by addingtheGaussiannoisewithdifferentvariancestotheoriginalimage. Theobtainedresultsshowed96 ± 1.3% accuracyinnormal images and 89 ± 4% accuracy in noisy images with a signal-to-noise ratio of -2.2 to -1. Conclusions: Ourresultsdemonstratedthatourproposedmethodwasabletoexcludethepapillarymusclesfromthecardiacwall. Moreover, our hybrid method showed better accuracy than the 2 methods of FCM and LSM alone.","PeriodicalId":429543,"journal":{"name":"Archives of Cardiovascular Imaging","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Cardiovascular Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5812/ACVI.42840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Background: Obtaining accurate left ventricular (LV) endocardium segmentation requires the exclusion of the papillary muscles fromthecardiacwall,whichisasignificant,albeitchallenging,stepincardiacimageanalysis. Mostmedicalimagingsystemssuffer from noise in that it affects the processing procedure. We herein introduce a segmentation algorithm, which improves segmentation accuracy by excluding the papillary muscles and suppressing noise effects. Methods: We proposed a hybrid fuzzy-based level set method (LSM) to segment the cardiac wall in magnetic resonance imaging imageseries. Inthisapproach,weappliedimprovedspatialfuzzyc-means(FCM)onthegivenimageandthenutilizedtheobtained result as the initial contour for the LSM method to obtain more accurate segmentation results. Results: We compared the obtained results with those obtained via manual segmentation as the gold standard vis-à-vis accuracy, Jaccard coefficient, dice coefficient, and false positive ratio. Also, the robustness of the proposed method to the noise was tested by addingtheGaussiannoisewithdifferentvariancestotheoriginalimage. Theobtainedresultsshowed96 ± 1.3% accuracyinnormal images and 89 ± 4% accuracy in noisy images with a signal-to-noise ratio of -2.2 to -1. Conclusions: Ourresultsdemonstratedthatourproposedmethodwasabletoexcludethepapillarymusclesfromthecardiacwall. Moreover, our hybrid method showed better accuracy than the 2 methods of FCM and LSM alone.
空间模糊c均值与水平集相结合的MRI图像序列心内膜分割方法
背景:获得准确的左心室(LV)心内膜分割需要从心壁排除乳头状肌,这是一个重要的,尽管具有挑战性的步进心脏图像分析。大多数医疗成像系统都受到噪声的影响,因为它会影响处理过程。本文介绍了一种通过排除乳头肌和抑制噪声影响来提高分割精度的分割算法。方法:提出一种基于混合模糊的水平集分割方法(LSM),对磁共振成像图像序列进行心壁分割。在该方法中,我们对给定的图像应用改进的空间模糊均值(FCM),然后将得到的结果作为LSM方法的初始轮廓,以获得更准确的分割结果。结果:我们将获得的结果与人工分割获得的结果进行了比较,以-à-vis准确率、Jaccard系数、dice系数和假阳性率为金标准。通过在原始图像中加入不同方差的高斯噪声,测试了该方法对噪声的鲁棒性。得到的结果表明,在正常图像中,准确率为96±1.3%,在噪声图像中,准确率为89±4%,信噪比为-2.2:-1。结论:Ourresultsdemonstratedthatourproposedmethodwasabletoexcludethepapillarymusclesfromthecardiacwall。而且,我们的混合方法比FCM和LSM单独的2种方法具有更好的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信