Accelerating the rate of convergence for LMS-like on-line identification and adaptation algorithms. Part 1: Basic ideas

J. Figwer, M. I. Michalczyk, T. Glówka
{"title":"Accelerating the rate of convergence for LMS-like on-line identification and adaptation algorithms. Part 1: Basic ideas","authors":"J. Figwer, M. I. Michalczyk, T. Glówka","doi":"10.1109/MMAR.2017.8046851","DOIUrl":null,"url":null,"abstract":"In the paper a modification enabling acceleration of the rate of convergence for LMS-like on-line identification and adaptation algorithms is proposed. This is based on an artificial decaying of initial conditions in recursive identification as well as adaptation algorithms. The decaying is done using a set of the most recent measurements. Properties of the algorithms with the proposed modification are compared with non-accelerated identification and adaptation algorithms in simulations of a practical adaptive control system.","PeriodicalId":189753,"journal":{"name":"2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2017.8046851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In the paper a modification enabling acceleration of the rate of convergence for LMS-like on-line identification and adaptation algorithms is proposed. This is based on an artificial decaying of initial conditions in recursive identification as well as adaptation algorithms. The decaying is done using a set of the most recent measurements. Properties of the algorithms with the proposed modification are compared with non-accelerated identification and adaptation algorithms in simulations of a practical adaptive control system.
加快lms类在线识别和自适应算法的收敛速度。第1部分:基本思想
本文提出了一种改进方法,可以加快类lms在线辨识和自适应算法的收敛速度。这是基于递归识别中初始条件的人工衰减以及自适应算法。衰变是通过一组最新的测量完成的。在实际的自适应控制系统仿真中,将改进后的算法与非加速识别和自适应算法的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信